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Sujet — Cachan, deuxième épreuve, 1990

Soit k un corps commutatif. On note k[X] l’algèbre des polynômes à une indéterminée à coeffi-
cients dans k.

Soit n un entier ⩾ 2. On note Mn(k) l’algèbre des matrices (n, n) à coefficients dans k, GLn(k)

le sous-ensemble de Mn(k) formé par les matrices inversibles, In la matrice identité. Si M ∈
Mn(k), on note tM sa transposée.

Soit (a1, . . . , an) dans kn et soit C = (ci,j) la matrice (n, n) définie par :
ci,j si 1 ⩽ j ⩽ n− 1 et i = j + 1,

ci,j = aj si 1 ⩽ i ⩽ n et j = n,

ci,j = 0 sinon.

Cette matrice est étudiée dans les trois parties du problème.

Partie I

1. Calculer le polynôme caractéristique de C.

2. Soit (e1, . . . , en) la base canonique de kn. Déterminer l’expression de Ci(e1) sur cette base,
pour 1 ⩽ i ⩽ n− 1.

En déduire que {In, C, . . . , Cn−1} est une partie libre de Mn(k).

Montrer que tout polynôme P de k[X], tel que P (C) = 0, est divisible par le polynôme
caractéristique de C.

3. Soit σ = (s1, . . . , sn) dans kn ; on considère la matrice Sσ = si,j définie par :{
si,j = si+j−n si i+ j > n,

si,j = 0 sinon.

Montrer que Sσ est une matrice symétrique.

Calculer son déterminant.

4. Montrer qu’il existe un unique σ = (s1, s2, . . . , sn) dans kn tel que s1 = 1 et tel que la
matrice SσC est symétrique.

5. En déduire qu’il existe une matrice symétrique inversible T et une matrice symétrique R
telles que C = TR.

6. Montrer qu’il existe une matrice symétrique inversible T telle que C = T tCT−1.

7. Calculer la matrice Sσ dans le cas où

an = 2, an−1 = −1 et ai = 0, ∀i ⩽ n− 2.

Partie II

Dans cette partie, on suppose que k est un corps de caractéristique différente de 2 et tel que :

∀a ∈ k, ∃b ∈ k | a = b2.
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1. Soit B une forme bilinéaire symétrique non dégénérée de kn.

Montrer qu’il existe x dans kn tel que B(x, x) = 1.

2. SoitM ∈ GLn(k). Montrer l’équivalence des assertions :

a) La matrice M est symétrique ;

b) ∃P ∈ GLn(k) |M = tPP .

3. Montrer que C est semblable à une matrice symétrique.

4. Montrer que dansMn(k) les matrices symétriques ne sont pas en général diagonalisables.
Donner un exemple de matrice symétrique non diagonalisable dans Mn(k) lorsque k est
le corps des nombres complexes.

Partie III

Dans cette partie, on suppose que k = R le corps des réels. On munitMn(R), R-espace vectoriel
de dimension finie, de la topologie produit.

1. Soit Ω le sous-ensemble de Mn(R) des matricesM qui vérifient la propriété suivante :

Si P est un élément de R[X] tel que P (M) = 0, alors P est divisible par le polynôme
caractéristique deM . Montrer que Ω est un ouvert.

2. Soit λ une valeur propre de C. Montrer que :

|λ| ⩽ max{1 + |ai|; i ∈ {1, . . . , n}.

3. Soit {Mi}i∈N une suite de Mn(R) telle que
— Mi est diagonalisable dans Mn(R), pour tout i dans N ;
— la suite {Mi}i∈N converge vers C.
Montrer que :

a) ∃l ∈ N | ∀m ⩾ l, Mm a n valeurs propres distinctes deux à deux.

b) ∃K ∈ R+ | ∀m ∈ N, ∀λ valeur propre de Mm, on a : |λ| ⩽ K.

c) Soit m ⩾ l. On note λm1 , . . . , λ
m
n les n valeurs propres de Mm rangées dans l’ordre

croissant.

Montrer que la suite {λmi }m⩾l converge, pour tout i dans {1, . . . , n} et que le polynômes
caractéristique de C admet ses n racines dans R.

4. Donner un exemple de matrice de Mn(R) qui n’est pas la limite d’une suite de matrices
diagonalisables dans Mn(R).
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Proposition de solution

Partie I

1. Méthode 1

Posons P (X) = Xn −
∑n−1

k=0 ak+1X
k.

Par définition,

C =



0 · · · · · · 0 a1

1 0
...

1
. . .

...
. . . 0 an−1

1 an


.

Donc

χC(X) = det(XIn − C) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

X 0 · · · 0 −a1
−1 X

...

−1
. . .

...
. . . X −an−1

−1 X − an

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
L1←L1+

∑n−1
k=1 XkLk+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · 0 P (X)

−1 X
...

−1
. . .

...
. . . X −an−1

−1 X − an

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

En développant par rapport à la première ligne,

χC = (−1)n+1(−1)n−1P (X) = P (X).

χC = −a1 − a2X − · · · − anX
n−1 +Xn.

Méthode 2

On développe par rapport à la dernière colonne.

2. Remarquons que
∀k ∈ J1, n− 1K, C(ek) = ek+1, et C(en) = anen.

Donc par récurrence immédiate, pour tout i ∈ J1, n− 1K, Ci(e1) = ei+1.

Soient λ1, . . . , λn tels que λ1In + λ2C + · · ·+ λnC
n−1 = 0. Alors, en particulier,

λ1e1 + λ2C
2(e1) + · · ·+ λnC

n−1(e1) = 0,

i.e.
λ1e1 + λ2e2 + · · ·+ λnen = 0.
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Or, (e1, . . . , en) est une base.

Donc λ1 = · · · = λn = 0.

Donc (In, C, . . . , C
n−1) est une famille libre de Mn(k).

Soit P ∈ k[X] tel que P (C) = 0. Notons m son degré. Si m ⩽ n − 1, P (C) est une com-
binaison linéaire nulle d’une sous famille de (In, C, . . . , C

n−1) qui est une partie libre de
Mn(k)., Donc P est nul. Si deg(P ) ⩾ n, effectuons la division euclidienne de P par χC dans
k[X] : il existe Q,R ∈ k[X] tels que P = χCQ + R, où deg(R) ⩽ n − 1 Or, par le théorème
de Cayley Hamilton, χC(C) = 0. Donc R(C) = 0. Donc, d’après le premier cas R = 0, et
P = χCQ.

Ainsi, tout polynôme P tel que P (C) = 0 est divisible par χC .

3. Pour tous i, j ∈ J1, nK,
sj,i =

{
sj+i−n si j + i > n

0 sinon.
= si,j .

Donc Sσ est une matrice symétrique.

Par définition,

det(Sσ) =
∑
τ∈§n

n∏
i=1

[Sσ]i,τ(i).

Or, pour tout τ ∈ Sn, s’il existe i ∈ J1, nK tel que i+ τ(i) ⩽ n, alors
∏n

i=1[Sσ]i,τ(i) = 0.

Soit τ ∈ S tel que pour tout i ∈ J1, nK, i + τ(i) > n. Alors τ(1) > n − 1, donc τ(1) = n. Par
suite, comme τ(2) 6= τ(n), et τ(2) > n − 2, nécessairement, τ(2) = n − 1. Par récurrence
finie immédiate, pour tout i ∈ J1, nK, τi = n− i+ 1.

Donc det(Sσ) =
∏n

i=1 s1 = sn1 .

4. Soit σ = (s1, . . . , sn) dans kn tel que s1 = 1 et tel que la matrice SσC est symétrique.

Soient i, j ∈ J1, nK.
[SσC]i,j =

n∑
k=1

[Sσ]i,k[C]k,i

=

{
[Sσ]i,j+1 si j 6= n,∑n

k=n−i+1[Sσ]i,kak si i+ j ⩾ n

=


si+j+1−n si i+ j ⩾ n et j 6= n,∑n

k=n−i+1 si+k−nak si j = n,

0 si i+ j < n.

Donc pour tout i ∈ J1, nK, pour tout j ∈ J1, n− 1K, [SσC]i,j = [SσC]j,i.
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Pour j = n, pour tout i ∈ J1, nK,
[SσC]i,n =

n∑
k=n−i+1

si+k−nak.

Et
[SσC]n,i = s1+i.

Donc

s1+i =
n∑

k=n−i+1

si+k−nak.

Pour tout i ∈ J1, nK, si s’exprime en fonction de (s1, . . . , si−1), donc par récurrence immé-
diate, tous les si s’expriment en fonction de s1.

Réciproquement, on vérifie que σ défini précédemment convient.

Ainsi, il existe un unique σ = (s1, s2, . . . , sn) dans kn tel que s1 = 1 et tel que la matrice
SσC est symétrique.

5. D’après la question précédente, SσC est symétrique. Comme s1 = 1 6= 0, Sσ est inver-
sible. Or C = S−1σ (SσC). En posant T = S−1σ , et R = SσC, T est une matrice symétrique
inversible, et R une matrice symétrique.

Ainsi, il existe une matrice symétrique inversible T et une matrice symétrique R telles
que C = TR.

6. On a T tCT−1 = T (tRtT )T−1 = TRTT−1 = TR = C.

Ainsi, il existe une matrice symétrique inversible T telle que T tCT−1.

7. s1 = 1, s2 = s1an = 2, s3 = s2an + s1an−1 = 4− 1 = 3,...

Montrons par récurrence sur i ∈ J1, nK que :

si = i. (Hn)

— i = 1 : s1 = 1 par définition de σ.
— Soit i ∈ J1, n− 1K tel que Hn soit vraie. On a

si+1 = sian + si−1an−1 = 2i− (i− 1) = i+ 1.

Partie II

1. Soit B une forme bilinéaire symétrique non dégénérée. Elle admet une base orthogonale
(e1, . . . , en). Comme B est non dégénérée, detB 6= 0, donc pour tout i ∈ J1, nK, B(ei, ei) =

λi 6= 0. Par définition de k, pour tout i ∈ J1, nK, il existe µi ∈ k tel que λi = µ2i . Donc
1
µ2
i
B(ei, ei) = 1. Par bilinéarité de B, B( eiµi

, eiµi
) = 1.

Ainsi, il existe x ∈ kn tel que B(x, x) = 1, et dans la base ( e1µ1
, . . . , enµn

), B a pour matrice
In.
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2. Soit M ∈ GL(k). L’implication réciproque est immédiate. Supposons que M est symé-
trique. Comme,M est inversible, il existe une forme bilinéaire symétrique non dégénérée
B qui a pour matrice M dans la base canonique. D’après la question précédente, il existe
une base orthogonale dans laquelle B a pour matrice In. Autrement dit, il existe P ∈ GL(k)
tel queM = tPP .

3. D’après la question I.5., il existe une matrice symétrique inversible T et une matrice
symétrique R telles que C = TR. D’après la question précédente, T = tPP . Donc

C = tPPR = tP (PRtP )(tP )−1.

Donc C est semblable à PRtP qui est symétrique puisque R l’est.

Ainsi, C est semblable à une matrice symétrique.

4. Considérons la matrice C avec ai = 0 pour tout i ∈ J1, nK. Alors C a pour polynôme caracté-
ristiqueXn, dont la seule racine est 0. Or, C est non nulle, donc C n’est pas diagonalisable.
De plus C est semblable à une matrice symétrique. Donc cette matrice symétrique n’est
pas diagonalisable.

Partie III

1. Il s’agit de montrer que l’ensemble des matrices telles que leur polynôme minimal est égal
à leur polynôme caractéristique est un ouvert.

SoitM ∈ Mn(R). Montrons que les deux propositions suivantes sont équivalentes :
— si P annuleM , alors χM divise P
— il existe x ∈ kn tel que (x,Mx, ...,Mn−1x) est libre
Considérons les morphismes d’algèbres suivants :

ϕ :
R[X] −→ Mn(R)
P 7−→ P (M)

et pour x ∈ Rn,

ϕx :
R[X] −→ Rn

P 7−→ P (M)(x)
.

Notons µ le générateur unitaire du noyau de ϕ, et µx celui du noyau de ϕx.

Soient µ = Pα1
1 · · ·Pαr

r la décomposition de µ en facteurs irréductibles etEi = ker(Pαi
i (M)).

Soit i ∈ J1, nK. Soit xi ∈ Ei tel que P
αi−1
i (M)(xi) 6= 0. Comme Pαi

i est irréductible, µxi =

Pαi
i .

Posons x = x1 + · · ·+ xr.

µx(M)(x) = µx(M)(x1) + · · ·+ µx(M)(xr)

Or, pour tout i ∈ J1, nK, µx(M)(xi) ∈ Ei. Comme les Ei sont en somme directe, µx(M)(xi) =

0, pour tout i.

Ainsi, µxi |µx. Et comme µx|µx, µx = µ (car les deux polynômes sont unitaires).

Soit x ∈ Rn tel que µx = µ.

En considérant le morphisme ψM,x = ϕx ◦ ϕ, on a, par le théorème d’isomorphisme,
R[X]/(µx) ' Ex, où Ex = Vect(x,Mx, . . .Mn−1x).
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Or deg(µx) = deg(µ).
Donc χM = µ si, et seulement si µx = χ, i.e. deg(µx) = n, soit dim(Ex) = n, autrement dit,
(x,Mx, . . . ,Mn−1x) est base de son propre Vect.
Soit x ∈ Rn tel que (x,Mx, . . . ,Mn−1x) est une famille libre.

Considérons l’application u :
Mn(R) −→ R
A 7−→ det(x,Ax, . . . , An−1x)

. Par définition de x,

u(M) 6= 0. Comme u est continue, il existe un voisinage W de M tel que u soit non nulle
sur W. Donc d’après la propriété énoncée au début, χA = µA pour toute matrice A ∈ W.

Ainsi, Ω est un ouvert.

2. Soit λ une valeur propre de C. Alors, il existe un vecteur propre x = (x1, . . . , xn) tel que
Cx = λx.

Soit i ∈ J1, nK.
n∑

j=1

ci,jxj = λxi.

Donc

λxi = (λ− αi,i)xi =
n∑

j=1
j ̸=i

ci,jxj .

Donc

|λ||xi| ⩽
n∑

j=1
j ̸=i

|ci,j ||xj | ⩽ ‖x‖∞
n∑

j=1
j ̸=i

|ci,j | ⩽ ‖x‖∞
n∑

j=1

|ci,j | = 1 + |ai| ⩽ ‖x‖∞ max
1⩽k⩽n

(1 + ak).

Donc
|λ|‖x‖∞ ⩽ ‖x‖∞ max

1⩽i⩽n
(1 + |ai|).

Comme x 6= 0, |λ| ⩽ max1⩽i⩽n(1 + |ai|).

Ainsi, si λ est une valeur propre de C, alors |λ| ⩽ max1⩽i⩽n(1 + |ai|).

3. a) Comme on est en dimension finie, toutes les normes sont équivalentes. Nous utilise-
rons dans la suite la norme infinie.

Comme Ω est un ouvert, il existe ε > 0 tel que B(C, ε) ⊂ Ω. Comme (Mi)i∈N converge
vers C, il existe ℓ ∈ N tel que pour tout m ⩾ ℓ, ‖C −Mm‖ < ε.

Soit m ⩾ ℓ. Comme Mm est diagonalisable et son polynôme caractéristique est égal
à son polynôme minimal, nécessairement, ses valeurs propres sont distinctes deux à
deux.
Ainsi, il existe ℓ ∈ N tel que pour tout m ⩾ ℓ,Mm a n valeurs propres distinctes deux
à deux.
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b) Soient ε > 0 et ℓ définis comme dans la question précédente. PosonsK1 = max1⩽n
m⩽ℓ

|λmi |

et K2 = ε+ ‖C‖.
Pour tout m ⩽ ℓ, pour tout λ valeur propre deMm, il est clair que |λ| ⩽ K1.

Pour tout m > ℓ,
|λ| ⩽ ‖Mm‖ ⩽ ‖Mm − C‖+ ‖C‖ ⩽ ε+ ‖C‖.

Donc, en posant K = max(K1,K2), pour tout m ∈ N, pour toute valeur propre λ de
Mm, |λ| ⩽ K.

c) Le polynôme caractéristique étant à coefficients qui sont fonction continue des co-
efficients de la matrice, et comme (Mm) converge vers C, la suite de polynômes ca-
ractéristiques (χMm) converge vers χC . Donc les suites (λmi )m∈N convergent vers les
racines de χC qui sont nécessairement dans R.

4. Considérons la matrice C avec a1 = 1 et ai = 0 pour tout i ∈ J1, n − 1K. C n’est pas limite
d’une suite de matrices diagonalisables dans Mn(R) car toutes ses racines ne sont pas
dans R.
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