Céline Wang

Sujet — Cachan, deuxieme épreuve, 1990

Soit k& un corps commutatif. On note k[X] 1’algebre des polynémes a une indéterminée a coeffi-
cients dans k.

Soit n un entier > 2. On note M, (k) l’algebre des matrices (n,n) a coefficients dans k, GL,, (k)
le sous-ensemble de M, (k) formé par les matrices inversibles, I,, la matrice identité. Si M €
M., (k), on note ‘M sa transposée.

Soit (a1,...,a,) dans k" et soit C = (¢; ;) la matrice (n,n) définie par :

cjsil<j<n-leti=j+1,
cij=a;sil<i<netj=n,
¢i,; = 0 sinon.

Cette matrice est étudiée dans les trois parties du probléme.
Partie I
1. Calculer le polynéme caractéristique de C.

2. Soit (eq,...,e,) la base canonique de k. Déterminer l’expression de C'(e;) sur cette base,
pourl1 <:<n—1.
En déduire que {I,,C,...,C" '} est une partie libre de M,, (k).
Montrer que tout polyndéme P de k[X], tel que P(C) = 0, est divisible par le polynéme
caractéristique de C.

3. Soit o = (s1,...,s,) dans k™ ; on considere la matrice S, = s; ; définie par :

8i,j = Sit+j—n sit—+j > n,
Sij = 0 sinon.

Montrer que S, est une matrice symétrique.

Calculer son déterminant.

4. Montrer qu’il existe un unique o = (s1,82,...,8,) dans k" tel que s; = 1 et tel que la
matrice S,C est symétrique.

5. En déduire qu’il existe une matrice symétrique inversible T" et une matrice symétrique R
telles que C = TR.

6. Montrer qu’il existe une matrice symétrique inversible 7T telle que C = T'CT .
7. Calculer la matrice S, dans le cas ou

an=2,0,_1=—-1leta; =0, Vi <n—2.

Partie II
Dans cette partie, on suppose que k est un corps de caractéristique différente de 2 et tel que :

Va€k,IbeEk]|a=0%
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1. Soit B une forme bilinéaire symétrique non dégénérée de k™.
Montrer qu'il existe x dans k" tel que B(x,z) = 1.

2. Soit M € GL, (k). Montrer 1'équivalence des assertions :
a) La matrice M est symétrique;
b) AP € GL, (k) | M ='PP.
3. Montrer que C est semblable a une matrice symétrique.
4. Montrer que dans M, (k) les matrices symétriques ne sont pas en général diagonalisables.

Donner un exemple de matrice symétrique non diagonalisable dans M, (k) lorsque k est
le corps des nombres complexes.

Partie III
Dans cette partie, on suppose que k = R le corps des réels. On munit M,,(R), R-espace vectoriel
de dimension finie, de la topologie produit.
1. Soit €2 le sous-ensemble de M,,(R) des matrices M qui vérifient la propriété suivante :
Si P est un élément de R[X] tel que P(M) = 0, alors P est divisible par le polynome
caractéristique de M. Montrer que €2 est un ouvert.

2. Soit A\ une valeur propre de C'. Montrer que :

|A| < max{1+ |a;|;i € {1,...,n}.

3. Soit {M,};cn une suite de M,,(R) telle que
— M, est diagonalisable dans M,,(R), pour tout ¢ dans N;
— la suite {M;};cn converge vers C.
Montrer que :
a)dl e N|Vm > 1, M,, an valeurs propres distinctes deux a deux.

b) 3K € R* | Vm € N, V) valeur propre de M,,, ona: |A\| < K.

c) Soit m > [. On note A[*,..., A\ les n valeurs propres de M,, rangées dans l'ordre
croissant.
Montrer que la suite {\]"},,>; converge, pour tout i dans {1,...,n} et que le polynémes

caractéristique de C admet ses n racines dans R.

4. Donner un exemple de matrice de M, (R) qui n’est pas la limite d’une suite de matrices
diagonalisables dans M,,(R).
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Proposition de solution

Partie I
1. Méthode 1
Posons P(X) = X" — Y070 ap1 XF.
Par définition,
0 0 aq
1 0
C = 1
ap—1
1 a,
Donc
X 0 0 —ai
-1 X
xco(X) =det(X1, — C) = —1
X —Qn-1
-1 X —ay
0 0 0 P(X)
-1 X :
:_1 _1
Li<Li+Y 32 XFLp
X —ap—
-1 X —a,

En développant par rapport a la premiere ligne,

xc = ()" (="' P(X) = P(X).

XCc = —a1 —ayX — o —a, X"V 4 X

Méthode 2
On développe par rapport a la derniere colonne.

2. Remarquons que
Vk € [1,n — 1], C(eg) = egt1,et C(en) = anen.

Donc par récurrence immédiate, pour tout i € [1,n — 1], C¥(e1) = e;11.
Soient \1,..., A\, tels que A1, + A2C + - -- + X\,C"~! = 0. Alors, en particulier,

Ae1 + )\202(61) + -+ )\ncnfl(ﬁ) =0,

ie.
Aer + dgeg + - + Apen, = 0.
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Or, (e1,...,e,) est une base.
Donc A\ =---= )\, =0.

Donc (I,,,C,...,C" 1) est une famille libre de M,, (k).

Soit P € k[X] tel que P(C) = 0. Notons m son degré. Sim < n — 1, P(C) est une com-
binaison linéaire nulle d’une sous famille de (I,,,C,...,C"!) qui est une partie libre de
M, (k)., Donc P est nul. Sideg(P) > n, effectuons la lelSlOIl euclidienne de P par yc dans
k[X] : il existe Q, R € k[X] tels que P = xcQ + R, ou deg(R) < n — 1 Or, par le théoréme
de Cayley Hamilton, x¢(C) = 0. Donc R(C) = 0. Donc, d’aprés le premier cas R = 0, et
P =xcQ.

‘Ainsi, tout polynéme P tel que P(C) = 0 est divisible par xc.

. Pour tous i, j € [1,n],

= Sivj'

o sj+i_nsij+i>n
SJJ - 3
0 sinon.

Donc S, est une matrice symétrique.

Par définition,

det(S, ﬁ

TES =1

Or, pour tout 7 € Sy, s'il existe i € [1,n] tel que i + 7(i) < n, alors [\ [S,]; -y = 0.

Soit 7 € S tel que pour tout i € [1,n], i + 7(i) > n. Alors 7(1) > n — 1, donc 7(1) = n. Par
suite, comme 7(2) # 7(n), et 7(2) > n — 2, nécessairement, 7(2) = n — 1. Par récurrence
finie immédiate, pour touti € [1,n], , =n —1+ 1.

Donc det(Sy) =[], s1 = sf.

. Soit o = (s1,...,s,) dans k" tel que s; = 1 et tel que la matrice S,C est symétrique.
Soient i,j € [1,n].

[SUC]Z}J' = Z[Sa}i,k[c]kz

k=1
_{ [Solij+1 51]7571
L Xk [Solikar sii+j = n
Sivj+1—n Sii+j = netj#n,
= Zzzn_m Sitk—nQg S1J =,
Osit+7 <n.

Donc pour tout i € [1,n], pour tout j € [1,n — 1], [SCli; = [S5Cl;i
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Pour j = n, pour tout i € [1,n],

n

[Soc]i,n: Z Sitk—nQk-

k=n—i+1
Et
[SoCln,i = S14i-
Donc
n
S144 = E Sitk—nQk-
k=n—i+1
Pour tout ¢ € [1,n], s; s’exprime en fonction de (si,...,s;—1), donc par récurrence immé-

diate, tous les s; s’expriment en fonction de s;.

Réciproquement, on vérifie que o défini précédemment convient.

Ainsi, il existe un unique o = (s, s2, ..., s,) dans k™ tel que s; = 1 et tel que la matrice
S,C' est symétrique.

. D’apres la question précédente, S,C est symétrique. Comme s; = 1 # 0, S, est inver-
sible. Or C = S;1(S,C). En posant T = S;!, et R = S,C, T est une matrice symétrique
inversible, et R une matrice symétrique.

Ainsi, il existe une matrice symétrique inversible T' et une matrice symétrique R telles
que C =TR.

. OnaTCT ' =T(RT)T'=TRTT '=TR=C.

Ainsi, il existe une matrice symétrique inversible 7T telle que T/CT!.

. s51=1, 89 =s1a, =2, $3 = Soap + S1Gp_1 =4—1=3,...
Montrons par récurrence sur i € [1,n] que :

— i =1:s; = 1 par définition de o.
— Soit i € [1,n — 1] tel que H,, soit vraie. On a

Si+1 = Silp + 8i—10n—1 = 21 — (Z — 1) =1+ 1.

Partie II

. Soit B une forme bilinéaire symétrique non dégénérée. Elle admet une base orthogonale
(e1,...,en). Comme B est non dégénérée, det B # 0, donc pour tout i € [1,n], B(e;, e;) =
Ai # 0. Par définition de k, pour tout i € [1,n], il existe w; € k tel que \; = p?. Donc

%B(ei,ei) = 1. Par bilinéarité de B, B(%, =) =1

Ainsi, il existe x € k™ tel que B(x,z) = 1, et dans la base (£ £

£L ..., %), B a pour matrice
M1 Hn
I,.
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2. Soit M € GL(k). L'implication réciproque est immédiate. Supposons que M est symé-
trique. Comme, M est inversible, il existe une forme bilinéaire symétrique non dégénérée
B qui a pour matrice M dans la base canonique. D’apres la question précédente, il existe
une base orthogonale dans laquelle B a pour matrice [,,. Autrement dit, il existe P € GL(k)
tel que M = 'PP.

3. D’apres la question I1.5., il existe une matrice symétrique inversible 7' et une matrice
symétrique R telles que C' = T'R. D’aprés la question précédente, T = ‘PP. Donc

C ='PPR ="'P(PR'P)('P)~".

Donc C est semblable & PR!P qui est symétrique puisque R 1’est.

Ainsi, C est semblable a une matrice symétrique.

4. Considérons la matrice C avec a; = 0 pour tout ¢ € [1,n]. Alors C' a pour polynéme caracté-
ristique X,,, dont la seule racine est 0. Or, C' est non nulle, donc C' n’est pas diagonalisable.
De plus C est semblable a une matrice symétrique. Donc cette matrice symétrique n’est
pas diagonalisable.

Partie III

1. Il s’agit de montrer que I’ensemble des matrices telles que leur polynéme minimal est égal
a leur polynéme caractéristique est un ouvert.
Soit M € M, (R). Montrons que les deux propositions suivantes sont équivalentes :
— si P annule M, alors y s divise P
— il existe = € k™ tel que (x, Mx, ..., M" 'x) est libre
Considérons les morphismes d’algebres suivants :

RX] — M,(R)

°F p s P(M)

et pour x € R"”,
RX] — R"

ol b p(M)(a)

Notons p le générateur unitaire du noyau de ¢, et u, celui du noyau de ¢,.

Soient 1y = P{* - - - P®" la décomposition de 4 en facteurs irréductibles et E; = ker(P;" (M)).
Soit i € [1,n]. Soit z; € E; tel que P ' (M)(x;) # 0. Comme P est irréductible, yi,, =
P,

Posons x = x1 4+ -+ - + 2.

pa(M)(2) = pra(M) (1) + - + pa (M) ()

Or, pour tout i € [1,n], uy(M)(z;) € E;. Comme les E; sont en somme directe, p,(M)(z;) =
0, pour tout .

Ainsi, ug, |p,. Et comme pig|py, 1y = p (car les deux polynomes sont unitaires).

Soit x € R" tel que p, = pu.

En considérant le morphisme ¢/, = ¢, o ¢, on a, par le théoreme d’isomorphisme,
R[X]/(itz) =~ E,, ou E, = Vect(z, Mx,... M" 'z).

6
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3.

Or deg(pa) = deg(p).
Donc xps = i si, et seulement si p, = x, i.e. deg(u,) = n, soit dim(E,) = n, autrement dit,
(v, Mz,...,M" 12) est base de son propre Vect.
Soit z € R™ tel que (x, Mz, ..., M" 'z) est une famille libre.
Mp(R) — R

A — det(x, Az, ..., A" 1)
u(M) # 0. Comme u est continue, il existe un voisinage W de M tel que u soit non nulle
sur W. Donc d’apres la propriété énoncée au début, x4 = 4 pour toute matrice A € W.

Considérons 1’application u : . Par définition de z,

‘Ainsi, ) est un ouvert. ‘

. Soit A\ une valeur propre de C. Alors, il existe un vecteur propre = = (x1,...,z,) tel que

Cr = .
Soit i € [1,n].

n

E CijT5 = )\{L‘l

j=1
Donc
n
)\:L'Z' = ()\ — ai,i)xi = Zci’jxj'
J=1
J#i
Donc
n n n
Mlzil <D leigllzs] < oo Y il < llzlloo D leigl = 1+ Jail < [|#]loo max (1+ ag).
j=1 j=1 j=1 D
J# J#
Donc

< il)-
Alllzlloo < llzlloo max (1+asl)

Comme x # 0,

Al < maxigicn (1 + |ai]).

‘Ainsi, si A est une valeur propre de C, alors |\| < maxici<n (1 + |ai]).

a) Comme on est en dimension finie, toutes les normes sont équivalentes. Nous utilise-
rons dans la suite la norme infinie.

Comme (2 est un ouvert, il existe € > 0 tel que B(C,¢) C 2. Comme (M;);cy converge
vers C, il existe ¢ € N tel que pour tout m > ¢, ||C — M,,|| < e.

Soit m > £. Comme M,, est diagonalisable et son polynéme caractéristique est égal
a son polyndme minimal, nécessairement, ses valeurs propres sont distinctes deux a
deux.

Ainsi, il existe ¢ € N tel que pour tout m > ¢, M,, a n valeurs propres distinctes deux
a deux.
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b) Soient € > 0 et ¢ définis comme dans la question précédente. Posons K| = maxi<n |A]"]
m<t
et Ko =c+ ||C].
Pour tout m < ¢, pour tout \ valeur propre de M,,, il est clair que |\| < Kj.

Pour tout m > ¢,
Al < Mol < | My = Cl[+IC]] < e+ |C]|-

Donc, en posant K = max(K, K3), pour tout m € N, pour toute valeur propre A de
M, |\ < K.

c) Le polynéme caractéristique étant a coefficients qui sont fonction continue des co-
efficients de la matrice, et comme (M,,) converge vers C, la suite de polyndmes ca-
ractéristiques (xaz,,) converge vers xc. Donc les suites (A]"),,en convergent vers les
racines de x¢ qui sont nécessairement dans R.

4. Considérons la matrice C avec a; = 1 et a; = 0 pour tout ¢ € [1,n — 1]. C n’est pas limite
d’'une suite de matrices diagonalisables dans M, (R) car toutes ses racines ne sont pas
dans R.



