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Sujet — Cachan 1987, Premiere épreuve

Dans tout le probleme, le mot fonction est mis pour fonction continue de R dans R. On désigne
par ¢ une fonction fixée vérifiant

Vx eR, q(z) >0 et JzreR, g(x)#0.

Pour toute fonction f, on désigne par (Ey) I’équation différentielle
y' —ay=f

et par £ I'ensemble des fonctions qui sont solutions sur R de (Ef). On désigne de méme par
(E) I’équation
y' —qy=0
et par £ I’ensemble de ses solutions sur R. On note ¢ (resp. 1) I’élément de £ vérifiant ¢(0) = 1
et ¢'(0) =0 (resp. ¥(0) = 0 et ¢/'(0) = 1). Enfin, pour ¢ dans R, on note y, 1’élément de £ vérifiant
y1(0) =1 et y,(0) = £.
Partie I
1. a) Montrer que, si y appartient a £, 32 est une fonction convexe. Que peut-on dire de la
restriction d’une fonction y de £ a un intervalle de R si y garde un signe constant sur
cet intervalle ?
b) Démontrer que le seul élément de £ qui soit une fonction bornée est la fonction iden-
tiquement nulle.
2. a) Démontrer Vx € R, ¢(x) > 1.
b) Démontrer
Ve >0, ¢¥(z) >0 et Vo<0, ¢(x) <0,
puis
Ve >0, p(x) >z et Va<0, ¥(z) <.

¢) Montrer que % est strictement décroissant sur |0, +oo[ et sur | — oo, 0].

3. On pose A = —limy_ 400 %.

a) Montrer Vz € R, y(z) > 0.
b) Montrer

Vo > 0, Vo € [0, 0], ¢ (z) <

(on pourra introduire la fonction ¢ — igggw).
c) En déduire Vz € R, ) (z) < 0.

4. Montrer de fagon analogue qu'’il existe un réel i tel que
Vo € R, yu(z) >0 et y,(x)>0.

Démontrer que pu est strictement plus grand que .
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5. Exprimer y,, en fonction de y,, A et i (on pourra poser y,, = Cy, et déterminer la fonction
(). En déduire

Vo >0, yu(z)ya(z) <1+ (n— Nz,

6. Montrer
Vo € R, yu(z)ya(z) <1+ (p— N)|z|.

Partie II
On considére une fonction f.

1. Montrer que, sil'intégrale f_Jr;o |f(x)| dz est convergente, la fonction

T +oo
W) = 3=l [ n0r@d+u@ [ nosoa]

est bien définie et appartient a &;.

2. Montrer que, si l'intégrale ff;o |z f(z)|dz est convergente, la fonction h précédente est
une fonction bornée.

3. En déduire que, sil’intégrale fj;o |z f(x)| dx est convergente, (E;) admet une et une seule
solution bornée.

Partie III
On suppose, dans cette partie, que l'intégrale ff;o |z|q(x) dz est convergente.

1. Montrer que lim,_, o f;oo q(t) dt = 0 puis démontrer que l'intégrale

0+Oo [f;oo q(t) dt} dz est convergente.

2. Soit y une fonction de classe C2, bornée sur [0, +oo| et vérifiant

Vz >0, ¥ (z) — q(z)y(x) > 0.

a) Montrer
+oo
voz0 @+ [ atuod <o,

b) En déduire que l'intégrale 0+°O z[y”(x) — q(x)y(x)] dz est convergente.

3. Soit f une fonction telle que Vz € R, f(z) > 0 et I'intégrale fj;o |z| f(z) dz diverge. Mon-
trer que 1'équation (£;) n’admet pas de solution bornée.

Partie IV

On suppose que Vz € R, ¢(z) = 1. Donner '’exemple de deux fonctions f; et f» vérifiant les
meémes conditions que la fonction f de IIL.3.. telles que (Ey, ) admette une solution bornée et
(Ef,) n’admette pas de solution bornée.
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Proposition de solution

Partie I
a) Soit y € £. Alors ¢y’ = qy et
(v*) = 29y
donc
)" =20y +yy") =2(y* + qy*) = 0
puisque ¢ > 0.

Donc 32 est convexe.

Soit I un intervalle de R tel que y garde un signe constant sur I. Alors y” = qy est de
signe constant sur J.

Ainsi, si y > 0 sur I, alors y y est convexe. Sinon, elle y est concave.

b) Soit y € £ une fonction bornée. D’apres la question précédente, y? est convexe. Donc
y? est constante.

En effet, si par ’absurde, il existe a,b € R tels que a < b et y?(a) # y?(b) (par exemple
y%(a) < y?(b)), alors par inégalité des pentes,

v () —v*(a) _ v*(x) — y*(b)
b—a h x—b ’

Yz > a,

ie.
Ve >a, (x— b)W

Par passage a la limite, lim,_, ; o y?(x) = +00, ce qui est absurde puisque 3> est bornée.

+y2(b) < y¥(2).

Donc y2 est constante, et par continuité de y, y est constante. Comme y est constante,
qy = 3" = 0, et comme ¢ n’est pas identiquement nulle, nécessairement, y = 0.

‘Ainsi, le seul élément de £ qui soit borné est la fonction identiquement nulle. ‘

a) Comme ¢ € &, d’apreés 1.1.a)), ¢? est convexe. Donc (¢?)’ est croissante. Or (¢?)(0) =
2¢(0)¢’(0) = 0, on en déduit donc le tableau de variations suivant :

z —00 0 +00
(%) () - 0 +
variations| T _—
de ¢* £2(0) =1

Donc

Par continuité de ¢,

or, (0) = 1.
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b)

c)

Donc Vz € R, p(z) > 1.

De facon analogue, on a le tableau de variations suivant :
x —00 0 +0oo
(¥?)' (@) - 0 +
variations|  T—__ -
de v” ¥*(0) =0

1? est monotone sur [0, +oo et | — oo, 0].

Montrons que ) est croissante sur |0, +o0|.

Supposons par I'absurde qu'’il existe 0 < a < b tels que ¥ (a) > ¥ (b). Comme ? est
croissante sur R, 1/%(a) < 12(b). Donc 1 (b) < 0 < 9(a). Par continuité de 1/, il existe
¢ €la,b| tel que ¥(c) = 0. Or pour tout = € [a,b], (?)'(x) = 2¢(x)y'(x) > 0. Donc
Y et ¢’ sont de méme signe sur [a,b]. Donc ¢’ est positive sur [a,c|, et donc ¢ est
croissante sur [a, ¢| ce qui est contradictoire puisque (a) > 0. Par croissance de v sur
Ry, Vo >0, ¢(z) > ¥(0) = 0.

On montre de fagon analogue que v est décroissante sur |0, +oo[. Par décroissance de
Ysur R_, Vo <0, ¢(x) <(0)=0.

‘Ainsi, Ve >0, ¢(z) > 0et Ve <0, ¢¥(x) <0. ‘

D’apres 1.1.a)) et ce qui précede, 1) est convexe sur [0, +oo[ et concave sur | — oo, 0].
Donc ¢ est croissante sur [0, +oo[ et décroissante sur | — oo, 0], et par théoreme des
accroissements finis, on a

et

Ainsi, Vo > 0, ¢(z) > z et Vo <0, ¢(z) < .

% est définie sur R*, domaine sur lequel elle est dérivable, par quotient de telles
fonctions, et . ,
Y o' (@)(x) — p(x)y(x)
Vr e R* (&) () = .
()@ )

Notons h = ¢'1) — 1)’ qui est dérivable, et pour tout z € R,

W (z) = ¢"(@)v(x) — p(@)¥"(z) = q()(p(2)P(z) — p(2)(z)) = 0.

Donc h est constante égale a h(0) = —1. Donc ( )/ est strictement négative sur | —oo, 0]

et sur |0, +oo.

<6

Ainsi, % est strictement décroissante sur |0, +o0o[ et sur | — oo, 0.
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3. a) (p,9) est clairement libre.
Donc £ = Vect(yp,1)). Or y»(0) = 1 et ¢4 (0) = 0. Donc yy = ¢ + A¢.
D’apres 1.2.c)), —% est une fonction strictement croissante sur | — oo, 0] et sur |0, +o0[.

Donc pour tout z > 0, \ > —igg ie. Vx>0, yr(x) > 0 puisque

Vo 20, ¢(z) =0,
et
Vo <0, ¢(z) <0,

et p(z) > 0.

_p=@)
Donc Vz < 0, A < @)’ et

VY <0, yx(z) > 0.

Ainsi, Vz € R, yx(z) > 0. |

b) Soit zyp > 0. Notons f,, = ¢ — igg;w € £. Comme — est croissante sur |0, zo], fz, ¥
est positive, donc par 1.1.a)), f;, y est convexe, et fg’c0 y est croissante, donc

Vo € [0,.’,12'0], f:;:o(o) < fa/:()(x)v

ie.
vz € [0, z0], ¢ (x <(p($0) "(z
0, 20), ¢/(2) < B @)
Ainsi, Vo > 0, Vo € [0,20], ¢'(z) < 294/ ()

c) Comme gy > 0, yf\ est croissante sur R. De plus, par question précédente, en faisant
tendre x( vers l'infini, on a

Vz € [0, 400, ¢'(x) + M (z) < 0.

Donc Vz € R, v} (z) <O0.

4. Posons = —lim,,_ “"g;. Une démonstration analogue a 1.3.a))-1.3.b)) permet de mon-

trer que y, > 0 et y;, > 0.

Onaalors A <0 < p. SiA=p=0,alors y\ = ¢ = y,, mais y, est décroissante et y, est
croissante, donc ¢ est constante égale a 1 ce qui est contradictoire puisque ¢ n’est pas
identiquement nulle.

Donc A < 0 < p.
Soit C' une fonction telle que y, = Cy,. Alors

yZ = C"y\ + 2C"y\ + Cy¥ = qCy,.
ie.

/
"+ 290" = 0
Yx
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car yy > 0. Donc il existe A € R tel que C’ = %
Or,
yu(0) = C(0) =1
{y,@(O) =C'(0) + C(0)A = p,
donc

c0)=1
C’'0)=pu—A
Donc C'(0)=A=p— X etC = ” . Donc il existe B € R tel que
rode
Vo € R, C’(:E):(,u—)\)/ + B.
0 y)\(t)
or C(0) = 1.
¢ _d
Donc Vz € R, C(x) = (u— )\foya—i—l.

Considérons g(z) = C(x)yx(r). g est clairement C?, et pour tout = € R,

J'(x) = C"(@)yr(x) + 20" (@) () + C ()l (x)
yA”+z< ) ”+{<u—x>/:(”+1}y;’<w>

“He =N a0 V(@) 20
T dt
= [(M—)\)/O erl}q z)yx(x)

= q(x)g(2).

Donc g € € De plus, g(0) = C(0)yx(0) =1et ¢'(0) = (u — A) + A = p.
Par unicité du probleme de Cauchy, y, = g.

Donc Vz € R, yu(z) = [(p—A) [y yé\ift) + 1y ().

. D’apreés la question précédente,

dt

Vo > 0, ya(2)yu(z) < [(n—A) /Ox y3(t)

+1]13 ().

Or, y4 < 0. Donc y3 est croissante sur R et > est décroissante sur R. Donc

o 20 (0= [ o R < 0 V) s

(b — Nz +y3(x)

+ 1y (x)

Ainsi, Vo > 0, yx(2)yu(z) < 14+ (1 — A)z.
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6. Soit x < 0. Comme yL 2 0, y, est croissante,

U (@)yu(r) < yA(@)yu(0) = ya(x) = yu(z) + (A — p)(z) < 1T+ (A — p)z.

Ainsi, Vo € R, yr(2)yu(z) <1+ (u— Nzl

Partie II

1. On suppose que f est intégrable. Soit x € R. y) > 0 et y, est décroissante, et y, > 0 et y,
est croissante. Alors d’une part,

vt €] — o0, 2], yu()]g(t)| < yulz) |f()] -
——
intégrable
Donc [ y.(t)f(t)dt existe.
D’autre part,
Vt € [z, +oof, ma(®)lg(t)] < wyalz) |f(E)] -
N——
intégrable

Donc f;oo ya(t) f(t) dt existe. Donc h est bien définie.
On a

Vo € R, 1/(0) =5 AW [ 050 dt+ 2@l (o)
+oo

+ (@) (W (@) f (@) + yu(@) (@) + ypu (@) / ya(t)f(t) dt

— 2y, (@)ya(2) f () — yu(@) (WA (@) f (2) + ya () ' (2))]

1

e [a(z)h(2) + ) (@)yu(@) f(2) — ya(2)y, () f ()]

Or, yx = yu + (A — p)e.
Donc
Vo € R, yA(@)yu(®) — ya(x)y,(2) = (A = ) (@' (@)p(2) — ()¢’ (x) =X —u

(d’apres 1.2.c)).
Donc h € &;.

2. Supposons que fj;o |xf(x)| dx est convergente. Soit = € R.
D’une part, puisque y, est décroissante,

vt €] — 00, 2], ya(@)yuO)If (O] < uAOyuOIF O] < [L+ (1= VL] 1f ()

(d’apres 1.6.).
D’autre part, puisque y,, est croissante,

Vit € [z, +oof, ya(O)yu(@)[f (O] < yr(O)yu(OIF )] < [1+ (u = ME]]F )]

7
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Donc

“+oo
Ih(z)] < —— / yu (a1 (B)] dt

=X J o
TN / f(®)ldt + / ILF(8)] dt < +oo.

Donc h est bornée.

3. Soit g € & bornée. Comme h € &y et est bornée, g — h € £ est bornée. D’ou I'existence.
L’'unicité de la solution bornée de £ est assurée par la question 1.1.b)).

Ainsi, si ff;o |z f(x)| do converge, alors (£5) admet une unique solution bornée.

Partie III

1. Soitz € R.On a
Vit >z, |zq(t)| < |tq(t)|.

Or,
“+o0o
/ |z|q(x) dx < 400,
donc
400 o0 T
Jim [ palae= g [ el [ pala=o

Donc lim, 400 2 [ > [q(t)| = 0.

Pour tout r € R,

/OT [/:oo q(t)dt] do = [z /+OO q(t) dt]g%—/orxq(x) dx

T

:r/;ooq(t)dwr/orxq(x)dx.

~~

— 0 converge
7—>+00

Ainsi, [;7 [ [ ¢(t) dt] da converge.

2. a) Posons, pour tout z € Ry, f(z) = ¢/'(z) + f;oo q(t)y(t) dt qui existe bien puisque y
est bornée et ¢ est intégrable donc qy est intégrable. Par hypothése, pour tout = €
R4, f'(x) > 0. Donc f est croissante, et admet une limite [ € R.
Comme f;oo q(t)y(t) dt converge, lim,_, 1~ 3'(z) = £. Si par I'absurde, ¢ < 0, il existe
A > 0 tel que pour tout x > A, y/(z) < £/2, et donc pour tout = > A, y/(x) < %x +

y(0) —+> —oo ce qui est absurde car y est bornée. On montre de méme que ¢ ne peut
T—+00

étre strictement positif.

Ainsi, Vz > 0, y/(z) + [ q(t)y(t) dt < 0.
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b) Soit M > 0 tel que Vx > 0, |y(z)| < M.
Comme 3" — qy > 0,

+00 +oo
/’ ww%w—unWNMx=/’ 2y () — q(@)y(a)] do
0 0

Par intégration par parties,

“+oo

[ ol @) - a@y@) s ~[aw@) + [ a0 a0)];
0

x

r “+o00
—/me+/ a(B)y(0)) dt) do
0 x
“+oo
:r(yov+3/ a(®)y(t) dt) —y(r) + y(0)

~~

<0

+o0
/ / t)dtdx
+oo
<y( / / t)dt dz.

Donc,

/rﬂwmww@mmndm—/ﬁmwm—«><>wx

0

400
< Jy(r)] + 1y(0 |+\// (t) dt da.
(r)| M, et

\fo T q(tyy(t) de da| < M [T [ [T q(t) dt] da < +oc.
Done [} ”m <nmmm<+w

+o00

Ainsi, I'intégrale [, z[y"(z) — q(z)y(z)] dz est convergente.

3. On suppose que f > 0 et que fjoooo |z| f(z) dz diverge.
On montre de facon analogue que si y est une fonction C? bornée sur | — oo, 0], et vérifie
Vo <0, y"(z) — q(z)y(z) > 0, alors fi)oo z[y"(x) — q(z)y(x)] dz est convergente.
Supposons par I’absurde qu'il existe h € & bornée
Comme Vx > 0, h/'(z)—q(z)h(x) = >0, [;7°° xf(x) dz est convergente et f —xf(z)dz
est convergente
Donc [," zf(x)dzx — f —xf(x)de = [T2|z|f(2) dz est convergente. Absurde.

Donc (E) n’admet pas de solution bornée.

Partie IV
En posant Vz € R, ¢(z) = 1, I'équation (Ey) devient v/ —y = f.
Posons, pour tout = € R,

{hoZ

9
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Les intégrales [ |z|fi(z) dz et [T°° |2|f2(2) o divergent.
y = —1 est une solution bornée de Ey, . Les solutions de Ey, sont de la forme x — Ae® 4 Be ™" —
(2 + 2) qui ne peuvent étre bornées.
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