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Sujet — Cachan 1987, Première épreuve

Dans tout le problème, le mot fonction est mis pour fonction continue de R dans R. On désigne
par q une fonction fixée vérifiant

∀x ∈ R, q(x) ⩾ 0 et ∃x ∈ R, q(x) 6= 0.

Pour toute fonction f , on désigne par (Ef ) l’équation différentielle

y′′ − qy = f

et par Ef l’ensemble des fonctions qui sont solutions sur R de (Ef ). On désigne de même par
(E) l’équation

y′′ − qy = 0

et par E l’ensemble de ses solutions sur R. On note φ (resp. ψ) l’élément de E vérifiant φ(0) = 1

et φ′(0) = 0 (resp. ψ(0) = 0 et ψ′(0) = 1). Enfin, pour ℓ dans R, on note yℓ l’élément de E vérifiant
yl(0) = 1 et y′ℓ(0) = ℓ.

Partie I

1. a) Montrer que, si y appartient à E , y2 est une fonction convexe. Que peut-on dire de la
restriction d’une fonction y de E à un intervalle de R si y garde un signe constant sur
cet intervalle ?

b) Démontrer que le seul élément de E qui soit une fonction bornée est la fonction iden-
tiquement nulle.

2. a) Démontrer ∀x ∈ R, φ(x) ⩾ 1.

b) Démontrer
∀x ⩾ 0, ψ(x) ⩾ 0 et ∀x ⩽ 0, ψ(x) ⩽ 0,

puis
∀x ⩾ 0, ψ(x) ⩾ x et ∀x ⩽ 0, ψ(x) ⩽ x.

c) Montrer que φ
ψ est strictement décroissant sur ]0,+∞[ et sur ]−∞, 0[.

3. On pose λ = − limx→+∞
φ(x)
ψ(x) .

a) Montrer ∀x ∈ R, yλ(x) > 0.

b) Montrer

∀x0 > 0, ∀x ∈ [0, x0], φ
′(x) ⩽ φ(x0)

ψ(x0)
ψ′(x)

(on pourra introduire la fonction φ− φ(x0)
ψ(x0)

ψ).

c) En déduire ∀x ∈ R, y′λ(x) ⩽ 0.

4. Montrer de façon analogue qu’il existe un réel µ tel que

∀x ∈ R, yµ(x) > 0 et y′µ(x) ⩾ 0.

Démontrer que µ est strictement plus grand que λ.
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5. Exprimer yµ en fonction de yλ, λ et µ (on pourra poser yµ = Cyλ et déterminer la fonction
C). En déduire

∀x ⩾ 0, yµ(x)yλ(x) ⩽ 1 + (µ− λ)x.

6. Montrer
∀x ∈ R, yµ(x)yλ(x) ⩽ 1 + (µ− λ)|x|.

Partie II

On considère une fonction f .

1. Montrer que, si l’intégrale
∫ +∞
−∞ |f(x)|dx est convergente, la fonction

h(x) =
1

λ− µ

[
yλ(x)

∫ x

−∞
yµ(t)f(t)dt+ yµ(x)

∫ +∞

x
yλ(t)f(t)dt

]
est bien définie et appartient à Ef .

2. Montrer que, si l’intégrale
∫ +∞
−∞ |xf(x)|dx est convergente, la fonction h précédente est

une fonction bornée.

3. En déduire que, si l’intégrale
∫ +∞
−∞ |xf(x)|dx est convergente, (Ef ) admet une et une seule

solution bornée.

Partie III

On suppose, dans cette partie, que l’intégrale
∫ +∞
−∞ |x|q(x)dx est convergente.

1. Montrer que limx→+∞ x
∫ +∞
x q(t)dt = 0 puis démontrer que l’intégrale∫ +∞

0

[ ∫ +∞
x q(t)dt

]
dx est convergente.

2. Soit y une fonction de classe C2, bornée sur [0,+∞[ et vérifiant

∀x ⩾ 0, y′′(x)− q(x)y(x) ⩾ 0.

a) Montrer

∀x ⩾ 0, y′(x) +

∫ +∞

x
q(t)y(t)dt ⩽ 0.

b) En déduire que l’intégrale
∫ +∞
0 x[y′′(x)− q(x)y(x)]dx est convergente.

3. Soit f une fonction telle que ∀x ∈ R, f(x) ⩾ 0 et l’intégrale
∫ +∞
−∞ |x|f(x)dx diverge. Mon-

trer que l’équation (Ef ) n’admet pas de solution bornée.

Partie IV

On suppose que ∀x ∈ R, q(x) = 1. Donner l’exemple de deux fonctions f1 et f2 vérifiant les
mêmes conditions que la fonction f de III.3.. telles que (Ef1) admette une solution bornée et
(Ef2) n’admette pas de solution bornée.
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Proposition de solution

Partie I

1. a) Soit y ∈ E . Alors y′′ = qy et
(y2)′ = 2yy′

donc
(y2)′′ = 2(y′2 + yy′′) = 2(y′2 + qy2) ⩾ 0

puisque q ⩾ 0.

Donc y2 est convexe.

Soit I un intervalle de R tel que y garde un signe constant sur I. Alors y′′ = qy est de
signe constant sur I.

Ainsi, si y ⩾ 0 sur I, alors y y est convexe. Sinon, elle y est concave.

b) Soit y ∈ E une fonction bornée. D’après la question précédente, y2 est convexe. Donc
y2 est constante.

En effet, si par l’absurde, il existe a, b ∈ R tels que a < b et y2(a) 6= y2(b) (par exemple
y2(a) < y2(b)), alors par inégalité des pentes,

∀x > a,
y2(b)− y2(a)

b− a
⩽ y2(x)− y2(b)

x− b
,

i.e.

∀x > a, (x− b)
y2(b)− y2(a)

b− a
+ y2(b) ⩽ y2(x).

Par passage à la limite, limx→+∞ y2(x) = +∞, ce qui est absurde puisque y2 est bornée.

Donc y2 est constante, et par continuité de y, y est constante. Comme y est constante,
qy = y′′ = 0, et comme q n’est pas identiquement nulle, nécessairement, y = 0.

Ainsi, le seul élément de E qui soit borné est la fonction identiquement nulle.

2. a) Comme φ ∈ E , d’après I.1.a)), φ2 est convexe. Donc (φ2)′ est croissante. Or (φ2)′(0) =

2φ(0)φ′(0) = 0, on en déduit donc le tableau de variations suivant :

x

(φ2)′(x)

variations
de φ2

−∞ 0 +∞

− 0 +

φ2(0) = 1φ2(0) = 1

Donc
∀x ∈ R, |φ2(x)| ⩾ 1.

Par continuité de φ,
φ ⩾ 1 ou φ ⩽ −1.

Or, φ(0) = 1.
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Donc ∀x ∈ R, φ(x) ⩾ 1.

b) De façon analogue, on a le tableau de variations suivant :

x

(ψ2)′(x)

variations
de ψ2

−∞ 0 +∞

− 0 +

ψ2(0) = 0ψ2(0) = 0

ψ2 est monotone sur [0,+∞[ et ]−∞, 0].

Montrons que ψ est croissante sur |0,+∞[.

Supposons par l’absurde qu’il existe 0 < a < b tels que ψ(a) > ψ(b). Comme ψ2 est
croissante sur R+, ψ2(a) ⩽ ψ2(b). Donc ψ(b) < 0 < ψ(a). Par continuité de ψ, il existe
c ∈]a, b[ tel que ψ(c) = 0. Or pour tout x ∈ [a, b], (ψ2)′(x) = 2ψ(x)ψ′(x) ⩾ 0. Donc
ψ et ψ′ sont de même signe sur [a, b]. Donc ψ′ est positive sur [a, c], et donc ψ est
croissante sur [a, c] ce qui est contradictoire puisque ψ(a) > 0. Par croissance de ψ sur
R+, ∀x ⩾ 0, ψ(x) ⩾ ψ(0) = 0.

On montre de façon analogue que ψ est décroissante sur |0,+∞[. Par décroissance de
ψ sur R−, ∀x ⩽ 0, ψ(x) ⩽ ψ(0) = 0.

Ainsi, ∀x ⩾ 0, ψ(x) ⩾ 0 et ∀x ⩽ 0, ψ(x) ⩽ 0.

D’après I.1.a)) et ce qui précède, ψ est convexe sur [0,+∞[ et concave sur ] − ∞, 0].
Donc ψ′ est croissante sur [0,+∞[ et décroissante sur ] − ∞, 0], et par théorème des
accroissements finis, on a

∀x ⩾ 0, ∃c ⩾ 0, ψ(x)− ψ(0) = ψ(x) = xψ′(0) ⩾ xψ′(0)

et
∀x ⩽ 0, ∃c ⩽ 0, ψ(x)− ψ(0) = ψ(x) ⩽ xψ′(0).

Ainsi, ∀x ⩾ 0, ψ(x) ⩾ x et ∀x ⩽ 0, ψ(x) ⩽ x.

c) φ
ψ est définie sur R∗, domaine sur lequel elle est dérivable, par quotient de telles
fonctions, et

∀x ∈ R∗,
(φ
ψ

)′
(x) =

φ′(x)ψ(x)− φ(x)ψ′(x)

ψ2(x)
.

Notons h = φ′ψ − φψ′ qui est dérivable, et pour tout x ∈ R,

h′(x) = φ′′(x)ψ(x)− φ(x)ψ′′(x) = q(x)(φ(x)ψ(x)− φ(x)ψ(x)) = 0.

Donc h est constante égale à h(0) = −1. Donc
(φ
ψ

)′
est strictement négative sur ]−∞, 0[

et sur ]0,+∞[.

Ainsi, φψ est strictement décroissante sur ]0,+∞[ et sur ]−∞, 0[.
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3. a) (φ,ψ) est clairement libre.

Donc E = Vect(φ,ψ). Or yλ(0) = 1 et y′λ(0) = 0. Donc yλ = φ+ λψ.

D’après I.2.c)), −φ
ψ est une fonction strictement croissante sur ]−∞, 0[ et sur ]0,+∞[.

Donc pour tout x ⩾ 0, λ > −φ(x)
ψ(x) , i.e. ∀x ⩾ 0, yλ(x) > 0 puisque

∀x ⩾ 0, ψ(x) ⩾ 0,

et
∀x < 0, ψ(x) < 0,

et φ(x) > 0.

Donc ∀x < 0, λ < −φ(x)
ψ(x) , et

∀x < 0, yλ(x) > 0.

Ainsi, ∀x ∈ R, yλ(x) > 0.

b) Soit x0 > 0. Notons fx0 = φ − φ(x0)
ψ(x0)

ψ ∈ E . Comme −φ
ψ est croissante sur ]0, x0], fx0 y

est positive, donc par I.1.a)), fx0 y est convexe, et f
′
x0 y est croissante, donc

∀x ∈ [0, x0], f
′
x0(0) ⩽ f ′x0(x),

i.e.

∀x ∈ [0, x0], φ
′(x) ⩽ φ(x0)

ψ(x0)
ψ′(x).

Ainsi, ∀x0 > 0, ∀x ∈ [0, x0], φ
′(x) ⩽ φ(x0)

ψ(x0)
ψ′(x).

c) Comme yλ > 0, y′λ est croissante sur R. De plus, par question précédente, en faisant
tendre x0 vers l’infini, on a

∀x ∈ [0,+∞[, φ′(x) + λψ′(x) ⩽ 0.

Donc ∀x ∈ R, y′λ(x) ⩽ 0.

4. Posons µ = − limx→−∞
φ(x)
ψ(x) . Une démonstration analogue à I.3.a))-I.3.b)) permet de mon-

trer que yµ > 0 et y′µ ⩾ 0.

On a alors λ ⩽ 0 ⩽ µ. Si λ = µ = 0, alors yλ = φ = yµ, mais yλ est décroissante et yµ est
croissante, donc φ est constante égale à 1 ce qui est contradictoire puisque q n’est pas
identiquement nulle.

Donc λ < 0 < µ.

Soit C une fonction telle que yµ = Cyλ. Alors

y′′µ = C ′′yλ + 2C ′y′λ + Cy′′λ = qCyλ.

i.e.

C ′′ + 2
y′λ
yλ
C ′ = 0
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car yλ > 0. Donc il existe A ∈ R tel que C ′ = A
y2λ
.

Or, {
yµ(0) = C(0) = 1

y′µ(0) = C ′(0) + C(0)λ = µ,

donc {
C(0) = 1

C ′(0) = µ− λ.

Donc C ′(0) = A = µ− λ, et C ′ = µ−λ
y2λ

. Donc il existe B ∈ R tel que

∀x ∈ R, C(x) = (µ− λ)

∫ x

0

dt
y2λ(t)

+B.

Or C(0) = 1.

Donc ∀x ∈ R, C(x) = (µ− λ)
∫ x
0

dt
y2λ(t)

+ 1.

Considérons g(x) = C(x)yλ(x). g est clairement C2, et pour tout x ∈ R,

g′′(x) = C ′′(x)yλ(x) + 2C ′(x)y′λ(x) + C(x)y′′λ(x)

= −2(µ− λ)
y′λ(x)

y2λ(x)
+ 2(µ− λ)

y′λ(x)

y2λ(x)
+
[
(µ− λ)

∫ x

0

dt
y2λ(t)

+ 1
]
y′′λ(x)

=
[
(µ− λ)

∫ x

0

dt
y2λ(t)

+ 1
]
q(x)yλ(x)

= q(x)g(x).

Donc g ∈ E De plus, g(0) = C(0)yλ(0) = 1 et g′(0) = (µ− λ) + λ = µ.

Par unicité du problème de Cauchy, yµ = g.

Donc ∀x ∈ R, yµ(x) =
[
(µ− λ)

∫ x
0

dt
y2λ(t)

+ 1
]
yλ(x).

5. D’après la question précédente,

∀x ⩾ 0, yλ(x)yµ(x) ⩽
[
(µ− λ)

∫ x

0

dt
y2λ(t)

+ 1
]
y2λ(x).

Or, y′λ ⩽ 0. Donc y2λ est croissante sur R+ et 1
y2λ

est décroissante sur R+. Donc

∀x ⩾ 0, [(µ− λ)

∫ x

0

dt
y2λ(t)

+ 1]y2λ(x) ⩽ [(µ− λ)
x

y2λ(x)
+ 1]y2λ(x)

⩽ (µ− λ)x+ y2λ(x)

⩽ (µ− λ)x+ y2λ(0)

= (µ− λ)x+ 1.

Ainsi, ∀x ⩾ 0, yλ(x)yµ(x) ⩽ 1 + (µ− λ)x.
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6. Soit x ⩽ 0. Comme y′µ ⩾ 0, yµ est croissante,

yλ(x)yµ(x) ⩽ yλ(x)yµ(0) = yλ(x) = yµ(x) + (λ− µ)ψ(x) ⩽ 1 + (λ− µ)x.

Ainsi, ∀x ∈ R, yλ(x)yµ(x) ⩽ 1 + (µ− λ)|x|.

Partie II

1. On suppose que f est intégrable. Soit x ∈ R. yλ > 0 et yλ est décroissante, et yµ > 0 et yµ
est croissante. Alors d’une part,

∀t ∈]−∞, x], yµ(t)|g(t)| ⩽ yµ(x) |f(t)|︸ ︷︷ ︸
intégrable

.

Donc
∫ x
−∞ yµ(t)f(t)dt existe.

D’autre part,
∀t ∈ [x,+∞[, yλ(t)|g(t)| ⩽ yλ(x) |f(t)|︸ ︷︷ ︸

intégrable

.

Donc
∫ +∞
x yλ(t)f(t)dt existe. Donc h est bien définie.

On a

∀x ∈ R, h′′(x) =
1

λ− µ

[
y′′λ(x)

∫ x

−∞
yµ(t)f(t)dt+ 2y′λ(x)yµ(x)f(x)

+ yλ(x)(y
′
µ(x)f(x) + yµ(x)f

′(x)) + y′′µ(x)

∫ +∞

x
yλ(t)f(t)dt

− 2y′µ(x)yλ(x)f(x)− yµ(x)(y
′
λ(x)f(x) + yλ(x)f

′(x))
]

=
1

λ− µ

[
q(x)h(x) + y′λ(x)yµ(x)f(x)− yλ(x)y

′
µ(x)f(x)

]
.

Or, yλ = yµ + (λ− µ)ψ.

Donc

∀x ∈ R, y′λ(x)yµ(x)− yλ(x)y
′
µ(x) = (λ− µ)(ψ′(x)φ(x)− ψ(x)φ′(x)) = λ− µ

(d’après I.2.c)).

Donc h ∈ Ef .

2. Supposons que
∫ +∞
−∞ |xf(x)|dx est convergente. Soit x ∈ R.

D’une part, puisque yλ est décroissante,

∀t ∈]−∞, x], yλ(x)yµ(t)|f(t)| ⩽ yλ(t)yµ(t)|f(t)| ⩽
[
1 + (µ− λ)|t|

]
|f(t)|

(d’après I.6.).

D’autre part, puisque yµ est croissante,

∀t ∈ [x,+∞[, yλ(t)yµ(x)|f(t)| ⩽ yλ(t)yµ(t)|f(t)| ⩽ [1 + (µ− λ)|t|]|f(t)|.
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Donc

|h(x)| ⩽ 1

µ− λ

∫ +∞

−∞
yµ(t)yλ(t)|f(t)|dt

⩽ 1

µ− λ

∫ +∞

−∞
|f(t)|dt+

∫ +∞

−∞
|tf(t)|dt < +∞.

Donc h est bornée.

3. Soit g ∈ Ef bornée. Comme h ∈ Ef et est bornée, g − h ∈ E est bornée. D’où l’existence.
L’unicité de la solution bornée de E est assurée par la question I.1.b)).

Ainsi, si
∫ +∞
−∞ |xf(x)|dx converge, alors (Ef ) admet une unique solution bornée.

Partie III

1. Soit x ∈ R. On a
∀t ⩾ x, |xq(t)| ⩽ |tq(t)|.

Or, ∫ +∞

−∞
|x|q(x)dx < +∞,

donc

lim
x→+∞

∫ +∞

x
|tq(t)|dt = lim

x→+∞

∫ +∞

−∞
|tq(t)|dt−

∫ x

−∞
|tq(t)|dt = 0.

Donc limx→+∞ x
∫ +∞
x |q(t)| = 0.

Pour tout r ∈ R, ∫ r

0

[ ∫ +∞

x
q(t)dt

]
dx =

[
x

∫ +∞

x
q(t)dt

]r
0
+

∫ r

0
xq(x)dx

= r

∫ +∞

r
q(t)dt︸ ︷︷ ︸

→
r→+∞

0

+

∫ r

0
xq(x)dx︸ ︷︷ ︸

converge

.

Ainsi,
∫ +∞
0

[ ∫ +∞
x q(t)dt

]
dx converge.

2. a) Posons, pour tout x ∈ R+, f(x) = y′(x) +
∫ +∞
x q(t)y(t)dt qui existe bien puisque y

est bornée et q est intégrable donc qy est intégrable. Par hypothèse, pour tout x ∈
R+, f

′(x) ⩾ 0. Donc f est croissante, et admet une limite l ∈ R.
Comme

∫ +∞
x q(t)y(t)dt converge, limx→+∞ y′(x) = ℓ. Si par l’absurde, ℓ < 0, il existe

A ⩾ 0 tel que pour tout x ⩾ A, y′(x) ⩽ ℓ/2, et donc pour tout x ⩾ A, y′(x) ⩽ ℓ
2x +

y(0) −→
x→+∞

−∞ ce qui est absurde car y est bornée. On montre de même que ℓ ne peut

être strictement positif.

Ainsi, ∀x ⩾ 0, y′(x) +
∫ +∞
x q(t)y(t)dt ⩽ 0.
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b) SoitM > 0 tel que ∀x ⩾ 0, |y(x)| ⩽M .

Comme y′′ − qy ⩾ 0,∫ +∞

0
|x[y′′(x)− q(x)y(x)]|dx =

∫ +∞

0
x[y′′(x)− q(x)y(x)]dx

Par intégration par parties,∫ r

0
x[y′′(x)− q(x)y(x)]dx =

[
x(y′(x) +

∫ +∞

x
q(t)y(t)dt)

]r
0

−
∫ r

0
(y′(x) +

∫ +∞

x
q(t)y(t))dt)dx

=r
(
y′(r) +

∫ +∞

r
q(t)y(t)dt

)
︸ ︷︷ ︸

⩽0

−y(r) + y(0)

−
∫ r

0

∫ +∞

x
q(t)y(t)dtdx

⩽y(0)− y(r)−
∫ r

0

∫ +∞

x
q(t)y(t)dtdx.

Donc, ∫ r

0

∣∣∣∣x[y′′(x)− q(x)y(x)]

∣∣∣∣dx =

∫ r

0
x[y′′(x)− q(x)y(x)]dx

⩽ |y(r)|+ |y(0)|+
∣∣ ∫ r

0

∫ +∞

x
q(t)y(t)dtdx

∣∣.
Or, |y(r)| ⩽M , et∣∣ ∫ r

0

∫ +∞
x q(t)y(t)dtdx

∣∣ ⩽M
∫ r
0

[ ∫ +∞
x q(t)dt

]
dx < +∞.

Donc
∫ +∞
0 |x[y′′(x)− q(x)y(x)]|dx < +∞.

Ainsi, l’intégrale
∫ +∞
0 x[y′′(x)− q(x)y(x)]dx est convergente.

3. On suppose que f ⩾ 0 et que
∫ +∞
−∞ |x|f(x)dx diverge.

On montre de façon analogue que si y est une fonction C2 bornée sur ] −∞, 0], et vérifie
∀x ⩽ 0, y′′(x)− q(x)y(x) ⩾ 0, alors

∫ 0
−∞ x[y′′(x)− q(x)y(x)]dx est convergente.

Supposons par l’absurde qu’il existe h ∈ Ef bornée.
Comme ∀x ⩾ 0, h′′(x)−q(x)h(x) = f(x) ⩾ 0,

∫ +∞
0 xf(x)dx est convergente et

∫ 0
−∞−xf(x)dx

est convergente.

Donc
∫ +∞
0 xf(x)dx−

∫ 0
−∞−xf(x)dx =

∫ +∞
−∞ |x|f(x)dx est convergente. Absurde.

Donc (Ef ) n’admet pas de solution bornée.

Partie IV

En posant ∀x ∈ R, q(x) = 1, l’équation (Ef ) devient y
′′ − y = f .

Posons, pour tout x ∈ R, {
f1(x) = 1

f2(x) = x2.
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Les intégrales
∫ +∞
−∞ |x|f1(x)dx et

∫ +∞
−∞ |x|f2(x)dx divergent.

y = −1 est une solution bornée de Ef1 . Les solutions de Ef2 sont de la forme x 7−→ Aex+Be−x−
(x2 + 2) qui ne peuvent être bornées.
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