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Sujet — Lyon, deuxième épreuve, 1988

Partie I

1. Soit (an)n∈N une suite de nombres réels positifs ou nuls, telle que la série entière
∑+∞

x=0 anx
n

converge pour |x| < 1. On note f(x) sa somme et on suppose qu’il existe s ∈ R+ tel que :

lim
x→1,x<1

f(x) = s.

a) Montrer que la série de terme général an est convergente de somme s.

b) Montrer par un exemple que ce résultat est en général faux pour une suite (an) dont
les termes ne sont pas tous positifs ou nuls.

2. Soit F (x) une fonction de classe C∞ sur [0, 1[, à valeurs réelles, telle que :

F (n)(x) ⩾ 0, ∀x ∈ [0, 1[, ∀n ⩾ 0,

F (n) désignant la dérivée d’ordre n de F . Pour n ⩾ 0 on pose :

rn(x) =
xn+1

n!

∫ 1

0
(1− t)nF (n+1)(tx)dt.

a) Montrer que pour 0 ⩽ x < y < 1 on a :

0 ⩽ rn(x) ⩽ rn(y)

(
x

y

)n+1

.

b) En déduire que pour 0 ⩽ x < 1, F (x) est somme de sa série de Taylor à l’origine.

c) On remplace l’intervalle [0, 1[ par ]− 1, 1[ dans les hypothèses. Montrer que pour −1 <

x < 1, F (x) est somme de sa série de Taylor à l’origine.

Partie II

Notation

1. Soit a ∈ R+. On note E(0, a) l’ensemble des fonctions continues f de [0, a] dans R, qui sont
de classe C2 sur [0, a[, et telles que f(x) > 0 pour tout x ∈ [0, a[ et f(a) = 0.

2. Soient m ∈ N et d ∈ R+. On considère le problème (1) associé aux conditions :
G(y)G′′(y) + ym+1 = 0 pour 0 ⩽ y < d

G(0) = 1

G′(0) = 0.

(1)

1. Supposons qu’il existe d > 0 et une fonction G(0, d), solution du problème (1).

Montrer qu’il existe une fonction g ∈ E(0, 1) et un nombre k ∈ R+ tels que :
g(x)g′′(x) + xm+1 = 0 pour 0 ⩽ x < 1

g′(0) = 0

g(1) = 0

(2)

et de plus g(0) = k.
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2. Montrer que l’équation différentielle

G(y)G′′(y) + ym+1 = 0

possède une et une seule solution maximale telle que G(0) = 1 et G′(0) = 0. On énoncera
avec précision le théorème utilisé pour cela.

On note maintenant I =]c, d[ l’intervalle sur lequel est définie cette solution maximale.

3. On suppose d’abord que d = +∞.

Montrer qu’on ne peut avoir :

G(y) > 0, pour tout y > 0.

En déduire que ce cas est impossible.

4. On a donc 0 < d < +∞.

a) Montrer que G peut être prolongée par continuité en y = d.

b) En déduire que le problème (1) possède une solution G ∈ E(0, d).

Partie III

On se donne une fonction h de [0, 1] dans R+, continue.

On considère le problème (3) associé aux conditions :
g(x)g′′(x) + 2xh(x) = 0 pour 0 ⩽ x < 1

g(1) = 0

g′(0) = 0.

(3)

On se propose de montrer que ce problème admet au plus une solution g dans E(0, 1).

Soient g1 et g2 deux éléments de E(0, 1), solutions de (2).

1. On suppose g1(0) < g2(0).

a) Montrer qu’il existe x0 ∈]0, 1] tel que

g1(x) < g2(x), ∀x ∈ [0, x0[, et g1(x0) = g2(x0).

b) Montrer que g′′2(x) ⩾ g′′1(x) sur ]0, x0[.

En déduire que g2(x)− g1(x) ⩾ g2(0)− g1(0), ∀x ∈]0, x0[.
Conclure.

2. On a donc g1(0) = g2(0). On suppose maintenant que g1(x)− g2(x) n’est pas identiquement
nul sur [0, 1].

a) Montrer qu’il existe x1 ∈]0, 1[ tel que :

g1(x1) 6= g2(x1) et g
′
1(x1) = g′2(x1).

b) En exhibant une contradiction, en déduire que g1(x) = g2(x) pour tout x ∈ [0, 1].

Partie IV
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On considère le problème (3) associé aux conditions :
g(x)g′(x) + 2x = 0 pour 0 ⩽ x < 1

g(1) = 0

g′(0) = 0.

(4)

1. Montrer que la seule solution g de (4) appartient à E(0, 1) est indéfiniment dérivable sur
[0, 1[.

2. Pour n ⩾ 0, donner une expression de g(n+3) en fonction des g(i) pour 0 ⩽ i ⩽ n+ 2.

3. En déduire que la fonction F (x) = −[g(x)− g(0)] vérifie :

F (n)(x) ⩾ 0, ∀x ∈ [0, 1[.

4. Montrer que

g(x) =
+∞∑
n=0

g(n)(0)

n!
xn pour x ∈ [0, 1].

5. On pose a0 = g(0). Montrer que g3n(0) = −(3n)! bn
a2n−1
0

, n = 1, 2, . . .

b1 =
1

3
et bn =

1

2

n−1∑
p=0

bpbn−p

(
1− 6p(n− p)

n(3n− 1)

)
, n ⩾ 2.

Partie V

1. On pose SN (x) =
∑N

n=1
bn

x2n−1 , pour x > 0 et N = 1, 2, . . .

Montrer que chaque équation SN (x) = x admet une et une seule racine positive xN , que
la suite (xN )N⩾1 est croissante et qu’elle converge vers a0.

2. On considère x ⩾ a0 les fonctions :

P (x) = x−
+∞∑
n=1

bn
x2n−1

, Q(x) = x2 − 2

3
+

+∞∑
n=2

Φ(n)

x2n−1
,

où

Φ(n) =
n−1∑
k=1

6k(n− k)

n(3n− 1)
bkbn−k.

Quelle relation y a-t-il entre P (x) et Q(x)?

3. On pose, pour x > 0 et N = 2, 3, . . . , TN (x) =
∑N

n=2
Φ(n)

x2(n−1) .

Montrer que chaque équation 2/3 − x2 = TN (x) admet deux racines positives yN et zN
telles que la suite (yN )N⩾2 soit croissante, (zN )N⩾2 soit décroissante, yN < a0 < zN et
lim yN = lim zN = a0 quand N tend vers +∞.

4. En utilisant les suites (xN ) et (zN ) déterminées aux questions V.1. et V.3. donner une valeur
de a0 avec une erreur inférieure à 10−1.
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Proposition de solution

Partie I

1. a) Comme (an)n∈N est une suite de termes positifs ou nuls, on a, pour tout n ∈ N, pour
tout x ⩾ 0,

n∑
k=0

anx
n ⩽ f(x) ⩽ s.

À n fixé, par passage à la limite, lorsque x tend vers 1,

n∑
k=0

an ⩽ s.

La série de terme général (an)n∈N est donc majorée, elle est donc convergente puisque
les termes sont positifs ou nuls. Donc la série est normalement convergente sur [−1, 1],
et donc f est continue sur cet intervalle.

Pour tout n ∈ N, pour tout |x| ⩽ 1, an|x|n ⩽ an.

Donc par théorème de convergence dominée,

lim
x→1,x<1

+∞∑
n=0

anx
n =

+∞∑
n=0

an = s.

Ainsi, la série de terme général an est convergente de somme s.

b) Considérons 1
1+x =

∑+∞
n=0(−1)nxn sur ] − 1, 1[. La série de terme général (−1)n n’est

pas convergente.

2. a) Soient 0 ⩽ x < y < 1. Soit n ∈ N. Par hypothèse, Fn+2 ⩾ 0 sur [0, 1[, donc Fn+1 est
croissante. Donc,

∀t ∈ [0, 1[, (1− t)nF (n+1)(tx) ⩽ (1− t)nF (n+1)(ty).

Donc, par croissance de l’intégrale,

0 ⩽ rn(x) ⩽
xn+1

n!

∫ 1

0
(1− t)nF (n+1)(ty)dt =

(
x

y

)n+1

rn(y).

Ainsi, pour 0 ⩽ x < y < 1, 0 ⩽ rn(x) ⩽ rn(y)
(
x
y

)n+1
.

b) Soit 0 ⩽ x < 1. Soit y ∈]x, 1[. Comme F est C∞, elle admet un développement de Taylor
avec reste intégral en 0 à l’ordre n et n+ 1, pour n ∈ N :

F (y) =
n∑

k=0

F (k)(0)

k!
yk + rn(y) et

n+1∑
k=0

F (k)(0)

k!
yk + rn+1(y).

Donc, pour tout n ∈ N,

rn+1(y) = rn(y)−
F (n+1)(0)

(n+ 1)!
yn+1.
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Or, x ⩾ 0, et Fn+1 ⩾ 0. Donc la suite (rn(y))n∈N est décroissante et minorée par 0, donc
converge dans R+.

D’après la question précédente,

0 ⩽ rn(x) ⩽
xn+1

n!

∫ 1

0
(1− t)nF (n+1)(ty)dt =

(
x

y

)n+1

rn(y).

Donc par passage à la limite à droite, comme (rn(y))n∈N converge, et par théorème
d’encadrement,

lim
n→∞

rn(x) = 0.

Donc F (x) =
∑+∞

n=0
F (n)(0)

n! xn.

Ainsi, pour 0 ⩽ x < 1, F (x) est somme de sa série de Taylor à l’origine.

c) Soit x ∈]− 1, 0[. L’égalité de I.2.a) reste valable pour y ∈]0, 1[.
De même pour y ∈]0, 1[, (rn(y))n∈N est décroissante. Donc les arguments précédents
restent valables, et le reste intégral (rn(x))n∈N tend vers 0.

Ainsi, pour −1 < x < 1, F (x) est somme de sa série de Taylor à l’origine.

Partie II

1. Posons, pour tout 0 ⩽ x < 1, g(x) = 1
d(m+3)/2G(dx), de sorte que, pour tout x ∈ [0, 1[,

g(x)g′′(x) + xm+1 =
1

dm+1
G(dx)G′′(dx) + xm+1.

Or, si x ∈ [0, 1[, dx ∈ [0, d[, donc G(dx)G′′(dx) + dm+1xm+1 = 0.

Donc g(x)g′′(x) + xm+1 = 0.

De plus, g′(0) = 1
d(m+1)/2G

′(0) = 0, et g(0) = 1
d(m+3)/2G(d) = 0 par hypothèse sur G. Enfin,

g(0) = 1
d(m+3)/2G(0) = 1

d(m+3)/2 > 0.

Ainsi, il existe g ∈ E(0, 1) et un nombre k ∈ R+ tels que :
g(x)g′′(x) + xm+1 = 0 pour 0 ⩽ x < 1

g′(0) = 0

g(1) = 0

g(0) = k

.

2. Considérons la fonction f :

[0, 1[×R∗
+ × R −→ R2

(x,

(
g

g′

)
) 7−→

(
g′

−xm+1

g

)
. Elle définit l’équation diffé-

rentielle donnée : (
g′

g′′

)
= f(x,

(
g

g′

)
).

La fonction f est clairement continue.
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Soient g1 et g2 deux solutions de l’équation différentielle. Comme g1 et g2 sont continues
sur [0, 1], elles y sont bornées. De plus, elle sont nécessairement non nulles. Donc il existe
m ∈ R∗

+ tel que m ⩾ |g1| et m ⩾ |g2|

‖f(x,
(
g

g′

)
)− f(x,

(
g

g′

)
‖2 =

√
(g′1 − g′2)

2 + (
xm+1

g1
− xm+1

g2
)2

⩽
√
(g′1 − g′2)

2 +
1

m2
(g1 − g2)2 ⩽ max(1, 1

m2
)‖
(
g1
g′1

)
−
(
g2
g′2

)
‖2

Donc f est lipschitzienne par rapport à la deuxième variable.

D’après le théorème de Cauchy-Lipschitz, il existe une unique solution maximale g telle

que

{
g′(0) = 0

g(0) = 1
d(m+3)/2

.

Via le changement de variable inverse, l’équation différentielle possède une et une seule

solution maximale telle que

{
G(0) = 1

G′(0) = 0
.

3. On suppose que d = +∞. Supposons par l’absurde G(y) > 0 pour tout y > 0. Alors, pour
tout y > 0, G′′(y) < 0. Donc G′ est décroissante sur R∗

+. Or, G
′(0) = 0, donc G′(y)〈0, pour

tout y > 0. On peut trouver ε > 0 et δ > 0 tels que pour tout y ⩾ δ, G′(x) ⩽ −ε < 0. D’après
le théorème fondamental de l’analyse, on a, pour tout y ⩾ δ,

G(y) = G(δ) +

∫ y

δ
G′(x)dx ⩽ G(δ)− ε(y − δ).

En faisant tendre y vers +∞, ce qui est possible puisque d = +∞,

lim
y→∞

G(y) = −∞.

ce qui est contradictoire avec l’hypothèse G(y) > 0 pour tout y > 0.

Si G est solution de l’équation différentielle, nécessairement, G(y) > 0, pour tout y >

0. En effet, si G change de signe, comme G est continue, par le théorème des valeurs
intermédiaires, il existe y0 tel que G(y0), alors 0 = G(y0)G

′′(y0) = −ym+1
0 . Donc y0 = 0. Or

G(0) = 1, ce qui est contradictoire. Donc G est de signe constant, et G > 0.

4. a) D’après la question précédente, G est décroissante, donc admet une limite finie ou
infinie en d. Or, G(y) > 0 pour tout y ∈ I, donc la limite est finie. On peut donc
prolonger G en d par continuité.

b) Il suffit de montrer que G(d) = 0, puisque G est continue sur [0, d] et C2 sur [0, d[.

Si G(d) > 0, G′′(y) = −ym+1

G(y) est prolongeable par continuité en d et G′ l’est égale-
ment, donc G vérifie l’équation différentielle sur [0, d]. D’après le théorème de Cauchy-
Lipschitz, G est prolongeable dans un voisinage de d, ce qui est absurde car elle est
supposée maximale.

Partie III
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1. a) Soit E = {x ∈ [0, 1], g1(x) = g2(x)}. Posons E est un ensemble non vide car contient 1
et est minoré par 0 donc admet une borne inférieur x0 ⩽ 1. Il existe une suite (xn)n de
E qui converge vers x0.

Or, pour tout n ∈ N, (g2 − g1)(xn) = 0. Par passage à la limite et continuité de g2 − g1,

(g2 − g1)(x0) = 0.

Comme x0 = inf(E) et g2 − g1 est continue, pour tout x ⩽ x0, g2(x) > g1(x).

Ainsi, il existe x0 ∈]0, 1] tel que

∀x ∈]0, 1], g1(x) < g2(x) et g1(x0) = g2(x0).

b) Par hypothèse sur g1, g2 et h, pour tout x ∈ [0, x0[,

g1(x) < g2(x)

donc

−2xh(x)

g1(x)
⩽ −2xh(x)

g2(x)

i.e.
g′′1(x) ⩽ g′′2(x).

Donc (g2 − g1)
′′ est positive sur [0, x0[, donc (g2 − g1)

′ est croissante sur [0, x0[. Or,
(g2−g1)

′(0) = 0 donc (g2−g1)
′ est positive sur cet intervalle. Donc g2−g1 est croissante

sur [0, x0[.

Ainsi, pour tout x ∈ [0, x0[, g2(x) − g1(x) ⩾ g2(0) − g1(0) > 0. Par passage à la limite
en x−0 , g2(x0)− g1(x0) > 0, ce qui est contradictoire avec la question précédente.

2. a) g1 − g2 est continue sur [0, 1], dérivable sur ]0, 1[ et (g1 − g2)(0) = (g1 − g2)(1) = 0.
D’après le théorème de Rolle, il existe x1 ∈]0, 1[ tel que (g1 − g2)

′(x1) = 0.

Supposons par l’absurde que g1(x1) = g2(x1). On a alors

{
g1(x1) = g2(x1)

g′1(x1) = g′2(x1)
. D’après

le théorème de Cauchy-Lipschitz, g1 = g2, ce qui est contradictoire avec l’hypothèse.

Ainsi, il existe x1 ∈]0, 1[ tel que

g1(x1) 6= g2(x1) et g
′
1(x1) = g′2(x1).

b) Comme (g1 − g2)
′ est continue sur [0, x1], dérivable sur ]0, x1[, et (g1 − g2)

′(0) = (g1 −
g2)

′(x1) = 0, d’après il le théorème de Rolles, il existe x2 ∈]0, 1[ tel que (g1− g2)
′′(x2) =

0, ce qui est contradictoire avec le théorème de Cauchy-Lipschitz.

Partie IV

1. L’existence d’une unique solution dans E(0, 1) est donnée par le théorème de Cauchy-
Lipschitz. Par récurrence immédiate, on montre que pour tout n ∈ N, g(n) est dérivable
sur [0, 1[.
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2. Soit n ⩾ 1. D’après la formule de Leibniz, pour tout x ∈ [0, 1[,

0 = (gg′′)(n+1)(x) =

n+1∑
k=0

(
n+ 1

k

)
g(k)(x)g(n+3−k)(x).

Donc pour tout x ∈ [0, 1[,

g(n+3)(x) = −
∑n+1

k=1

(
n+1
k

)
g(k)(x)g(n+3−k)(x)

g(x)
.

Pour n = 0, on a, pour tout x ∈ [0, 1[,

g(3)(x) = −2 + g′(x)g′′(x)

g(x)
.

3. Comme g ∈ E(0, 1), g′′ est négative sur [0, 1].

Montrons par récurrence sur n ⩾ 2 que :

∀k ⩽ n,∀x ∈ [0, 1], F (n)(x) ⩾ 0 (H1)

— n = 2 : vrai d’après ce qui précède
— Soit n ⩾ 2 tel que H1. D’après la question précédente,

F (n+1)(x) = −
∑n−1

k=1

(
n−1
k

)
g(k)(x)g(n+1−k)(x)

g(x)

=

∑n−1
k=1

(
n−1
k

)
F (k)(x)F (n+1−k)(x)

g(x)

⩾ 0

par hypothèse de récurrence et g(0) > 0.
Comme g′′ est négative, g′ est décroissante. Or, g′(0) = 0, donc F ′ = −g′ est positive, et
F (x) = −(g(x)− g(0)) est positive (car g est décroissante).

Ainsi, pour tout n ∈ N, F (n)(x) ⩾ 0.

4. Comme F est C∞ sur [0, 1[, et pour tout n ∈ N, pour tout x ∈ [0, 1[, F (n)(x) ⩾ 0, d’après la
question I.2.c), F est somme de sa série de Taylor en 0. Soit x ∈ [0, 1[.

F (x) =
+∞∑
n=0

F (n)(0)

n!
xn.

De plus, par hypothèse sur g,

lim
x→1,x<1

F (x) = g(0) ⩾ 0.

et d’après la question précédente,

F (n)(x) ⩾ 0, ∀x ∈ [0, 1[.
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Donc d’après la question I.1.a), pour tout x ∈ [0, 1],

F (x) =

+∞∑
n=0

F (n)(0)

n!
xn

g(0)− g(x) = −
+∞∑
n=1

g(n)(0)

n!
xn

i.e.

g(x) =
+∞∑
n=0

g(n)(0)

n!
xn.

5. Montrons par récurrence sur n ⩾ 1 que

∀k ⩽ n, g(k)(0) 6= 0 si 3|k, et gk(0) = 0 sinon (H2)

— n = 1 : comme g ∈ E(0, 1), nécessairement, g(0) > 0. Par hypothèse, g′(0) = 0.
— Soit n ⩾ 1 tel que H2

— Si n+ 1 = 0 mod 3,

g(n+1) = − 1

g(0)

n−1∑
k=1

(
n− 1

k

)
g(n+1−k)(0)g(k)(0)

= − 1

g(0)

n−1∑
k=1,

k=0 mod 3

g(n+1−k)(0)g(k)(0)

Or, par hypothèse de récurrence, comme n+1−k = 0 mod 3 pour tout k = 0 mod 3,
g(n+1)(0) 6= 0.

— Si n+1 6= 0 mod 3, pour tout k ∈ J1, n−1K, on ne peut avoir simultanément n+1−k =

0 mod 3 et k = 0 mod 3. Donc par hypothèse de récurrence, g(n+1)(0) = 0.
Donc Hn+1 est vérifiée.

6. Montrons par récurrence sur n ⩾ 1 que

∀1 ⩽ k ⩽ n, g(3k)(0) = −(3k)!
bk

a2k−1
0

. (H3)

— n = 1 : on a

g(3)(0) = − 2

a0
=

−3!b1
a0

.

— Soit n ⩾ 1 tel que H3.

g(3n+3)(0) = − 1

g(0)

3n+1∑
k=1

(
3n+ 1

k

)
g(k)(0)g(3n+3−k)(0)

= − 1

g(0)

n∑
p=1

(
3n+ 1

3p

)
g(3p)(0)g(3n+3−3p)(0)
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= − 1

g(0)

n∑
p=1

(
3n+ 1

3p

)
(3p)!

bp

a2p−1
0

(3n+ 3− 3p)!
bn+1−p

a2n+2−2p−1
0

= −(3n+ 3)!

a2n+1
0

n∑
p=1

(3n+ 2− 3p)(3n+ 3− 3p)

(3n+ 2)(3n+ 3)
bpbn+1−p

= −(3n+ 3)!

a2n+1
0

n∑
p=1

(3n+ 2− 3p)(n+ 1− p)

(3n+ 2)(n+ 1)
bpbn+1−p

= −(3n+ 3)!

a2n+1
0

n∑
p=1

(
(3n+ 2)(n+ 1− p)

(3n+ 2)(n+ 1)
− 3p(n+ 1− p)

(3n+ 2)(n+ 1)

)
bpbn+1−p

= −(3n+ 3)!

a2n+1
0

n∑
p=1

(
n+ 1− p

n+ 1
− 3p(n+ 1− p)

(3n+ 2)(n+ 1)

)
bpbn+1−p

= −(3n+ 3)!

2a2n+1
0

n∑
p=1

(
2(n+ 1− p)

n+ 1
− 6p(n+ 1− p)

(3n+ 2)(n+ 1)

)
bpbn+1−p

= −(3n+ 3)!

2a2n+1
0

n∑
p=1

(
n+ 1− p

n+ 1
+

p

n+ 1
− 6p(n+ 1− p)

(3n+ 2)(n+ 1)

)
bpbn+1−p

en intervertissant des termes

= −(3n+ 3)!

2a2n+1
0

n∑
p=1

(
1− 6p(n+ 1− p)

(3n+ 2)(n+ 1)

)
bpbn+1−p.

Partie V

1. Soit N ∈ N. Posons, pour tout x > 0, PN (x) = x− SN (x). PN est clairement C2 sur R∗
+, et

∀x > 0, P ′
N (x) =

N∑
n=1

(2n− 1)bn
x2n

+ 1 > 0

car bn est strictement positif par définition.

Donc PN est strictement croissante sur R∗
+.

Or,
lim

x→0+
PN (x) = −∞, et lim

x→+∞
PN (x) = 1 > 0.

D’après le théorème de la bijection, il existe un unique xN > 0, tel que PN (xN ) = xN .

Ainsi, chaque équation SN (x) = x admet une et une seule racine positive xN .

Comme bn > 0 pour tout n ∈ N, et la suite (PN )N∈N∗ est une suite décroissante de fonctions
croissantes, (xN )N⩾1 est croissante donc admet une limite finie ou infinie.

De plus,

PN (a0) =
N∑

n=0

g(3n)(0)

(3n)!
>

+∞∑
n=0

g(3n)(0)

(3n)!
= g(1) = 0.

10
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Donc ∀N ⩾ 1, xN ⩽ a0. Notons x la limite de (xN ).

(SN )N⩾1 est une suite croissante de fonctions décroissantes, donc admet une limite S.

Pour N ⩾ 1, on a, pour tout p ⩾ 0,

SN (xN+p) ⩽ SN (xN ) ⩽ SN+p(xN ),

i.e.
SN (xN+p) ⩽ xN ⩽ SN+p(xN ).

Par passage à la limite, par continuité de SN sur R∗
+,

SN (a0) ⩽ SN (x) ⩽ x ⩽ S(xN ) ⩽ S(a0).

puisque xN ⩽ a0.

Or,

S(a0) = lim
N→∞

SN (a0) = lim
N→∞

−
N∑

n=1

g(3n)(0)

(3n)!
= −

+∞∑
n=0

g(3n)(0)

(3n)!
+ g(0) = g(1) + g(0) = a0.

Donc par passage à la limite quand N → ∞.

a0 ⩽ x ⩽ a0.

Donc la suite (xN ) converge vers a0.

2. Soit x ⩾ a0.

P (x) = x−
+∞∑
n=1

bn
x2n−1

= x− 1

3x
− 1

2

+∞∑
n=2

1

x2n−1

n−1∑
k=1

bpbn−k

(
1− 6k(n− k)

n(3n− 1)

)

= x− 1

3x
− 1

2

+∞∑
n=1

1

x2n−1

n−1∑
k=1

bkbn−k +
1

2x

+∞∑
n=2

1

x2(n−1)

n−1∑
k=1

6k(n− k)

n(3n− 1)
bkbn−k

= x− 1

3x
− 1

2x

+∞∑
n=2

1

x2n−2

n−1∑
k=1

bkbn−k +
1

2x

(
Q(x)− x2 +

2

3

)

=
1

2

x+
1

x

Q(x)−

(
+∞∑
n=1

bn
x2n−1

)2


Ainsi, pour tout x ⩾ a0, P (x) = 1
2

(
x+ 1

x

(
Q(x)−

(∑+∞
n=1

bn
x2n−1

)2))
.

11
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3. Posons, pour tout x > 0, QN (x) = TN (x)− 2
3 + x2. On a, QN est C2 sur R∗

+, et

Q′′
N (x) =

N∑
n=2

(2n− 2)(2n− 1)Φ(n)

x2n
+ 2 > 0.

Or,
— limx→0Q

′
N (x) = −∞,

— limx→+∞Q′
N (x) = +∞,

— limx→0QN (x) = +∞,
— limx→+∞QN (x) = +∞.
En notant mN > 0 le réel tel que Q′

N (mN ) on a donc le tableau de signes et de variations
suivant :

x

Q′′
N (x)

Q′
N (x)

QN

0 mN +∞

+ +

− +

+∞+∞ +∞+∞

Or,

QN (a0) < Q(a0) = −a20 +

(
+∞∑
n=1

bn
x2n−1

)2

= (S(a0)− a0) (S(a0) + a0) = 0.

Donc QN (mN ) < 0.

Donc QN admet deux racines positives yN < zN qui sont de part et d’autre de a0. (QN )N⩾2

étant une suite croissante puisque TN l’est, nécessairement (yN )N⩾2 est croissante et
(zN )N⩾2 est décroissante, et on a

yN ⩽ yN+1 ⩽ a0 ⩽ zN+1 ⩽ zN .

Les suites (yN ) et (zN ) étant monotones, et bornées, elles sont convergentes. Notons y et
z leur limite. De l’inégalité précédente, on tire

y ⩽ a0 ⩽ z.

Soit N0 ⩾ 2. Pour tout N ⩾ N0, QN (yN ) = 0, donc

y2N − 2

3
+

N0∑
n=2

Φ(n)

y2n−2
⩽ y2N − 2

3
+

+∞∑
n=2

Φ(n)

y2n−2
N

= 0.

Donc par passage à la limite,
N0∑
n=2

Φ(n)

y2n−2
⩽ 2

3
− y2.
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Ceci étant vrai pour tout N0 ⩾ 2, par passage à la limite, la série
∑

n⩾2
Φ(n)
y2n−2 converge, et

Q(y) ⩽ 0.

Donc P (y) = 0.

Si par l’absurde y < a0, alors

y − a0 =

+∞∑
n=1

bn

(
1

y2n−1
− 1

a2n−1
0

)
> 0,

ce qui est contradictoire. Donc y = a0.

On montre de façon analogue que z = a0.

Ainsi, lim yN = lim zN = a0.

4. Il suffit par exemple de calculer x2 et z2. On a b1 =
1
3 , b2 =

1
45 , Φ(2) =

1
15 , Φ(3) =

1
90 .

x22 est racine du polynôme X2 − 1
3X − 1

45 qui a une racine positive 1
3 + 1√

5
. Donc x2 =

(13 +
1√
5
)1/2 ' 0, 89. De même, z22 est la plus grande racine du polynôme X2− 2

3X+ 1
15 . Donc

z2 ' 1, 09.

13


