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Sujet — Lyon, deuxieme épreuve, 1988

Partie I
1. Soit (as)nen une suite de nombres réels positifs ou nuls, telle que la série entiére 310 a,,2™

converge pour |z| < 1. On note f(z) sa somme et on suppose qu'il existe s € R tel que :

lim f(z)=s.

r—1lx<1

a) Montrer que la série de terme général a,, est convergente de somme s.

b) Montrer par un exemple que ce résultat est en général faux pour une suite (a,) dont
les termes ne sont pas tous positifs ou nuls.

2. Soit F'(x) une fonction de classe C* sur [0, 1], a valeurs réelles, telle que :
F™(z) >0, Vo €[0,1], Vn >0,

F(™) désignant la dérivée d’ordre n de F. Pour n > 0 on pose :

n+1 1
ro(z) = = /0 (1 — )" FOH) (t2) dt.

n!

a) Montrerque pour0 <z <y < lona:

b) En déduire que pour 0 < z < 1, F(x) est somme de sa série de Taylor a l’origine.

¢) On remplace l'intervalle [0, 1] par | — 1, 1] dans les hypothéses. Montrer que pour —1 <
x < 1, F(x) est somme de sa série de Taylor a l'origine.

Partie II
Notation
1. Soita € R;. On note E(0,a) I’ensemble des fonctions continues f de [0, a] dans R, qui sont
de classe C? sur [0, al, et telles que f(x) > 0 pour tout z € [0, a| et f(a) = 0.

2. Soient m € N et d € R.. On considere le probleme (1) associé aux conditions :

G(y)G"(y) +y™ ™ =0pour0 <y < d
G(0) =1 (1)
G'(0) = 0.
1. Supposons qu'il existe d > 0 et une fonction G(0, d), solution du probleme (1).

Montrer qu'il existe une fonction g € F(0, 1) et un nombre k € R, tels que :

g(x)g"(z) + 2™t =0pour 0 < = < 1
g(1)=0

et de plus g(0) = k.
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2. Montrer que I’équation différentielle
G(y)G"(y) +y"* =0

possede une et une seule solution maximale telle que G(0) = 1 et G’(0) = 0. On énoncera
avec précision le théoréme utilisé pour cela.

On note maintenant I =|c, d[ I'intervalle sur lequel est définie cette solution maximale.

3. On suppose d’abord que d = +oo.
Montrer qu’on ne peut avoir :

G(y) > 0, pour tout y > 0.

En déduire que ce cas est impossible.

4. Onadonc0 < d < +oo.
a) Montrer que G peut étre prolongée par continuité en y = d.
b) En déduire que le probléeme (1) posséde une solution G € E(0,d).

Partie III
On se donne une fonction & de [0, 1] dans R, continue.
On considére le probleme (3) associé aux conditions :

g(x)g"(x) +2zh(x) =0pour 0 < z < 1
) = (3)

On se propose de montrer que ce probléeme admet au plus une solution g dans E(0, 1).
Soient g; et g2 deux éléments de E(0, 1), solutions de (2).

1. On suppose ¢1(0) < g2(0).
a) Montrer qu'il existe zg €]0, 1] tel que

gl(CC) < 92(‘/1:)7 Vr € [O,I’O[, et gl(a:O) = 92(.’170).
b) Montrer que ¢ (x) > g7 (x) sur |0, zo|.
En déduire que g2(z) — g1(z) = g2(0) — ¢1(0), YV €]0, zo|.
Conclure.

2. Onadonc ¢g;(0) = g2(0). On suppose maintenant que g;(x) — g2(z) n’est pas identiquement
nul sur [0, 1].
a) Montrer qu'il existe z; €]0, 1] tel que :

91(x1) # g2(1) et gi(x1) = go(a1).

b) En exhibant une contradiction, en déduire que g;(x) = g2(z) pour tout z € [0, 1].

Partie IV
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On considére le probléme (3) associé aux conditions :

(4)

1. Montrer que la seule solution g de (4) appartient a E(0, 1) est indéfiniment dérivable sur
[0, 1].

2. Pour n > 0, donner une expression de ¢ en fonction des ¢ pour 0 < i < n + 2.

3. En déduire que la fonction F(z) = —[g(x) — g(0)] vérifie :

FM(z) >0, Vo € [0,1].

4. Montrer que
+oo (n) 0

g
=30

n=0

;—a" pour z € [0,1].
n:

5. On pose ag = g(0). Montrer que ¢>"(0) = —(3n)!azﬁ—",1, n=12...
0

n—1
1 1 6p(n — p)
_ Lty =L (1 L n>2
bi=g et 2p§:0jbpb p< )"

Partie V
1. On pose Sy(z) = Zﬁ’:l Zgbin,l pourz >0et N =1,2,...

Montrer que chaque équation Sy(z) = = admet une et une seule racine positive zy, que
la suite (zx)n>1 est croissante et qu’elle converge vers ay.

2. On considere z > ag les fonctions :

ou

Quelle relation y a-t-il entre P(z) et Q(z)?
3. Onpose, pourz >0et N =23, ..., Tx(z) =N, x%f@n-
Montrer que chaque équation 2/3 — 22 = Ty (z) admet deux racines positives yy et zy

telles que la suite (yn)n>2 soit croissante, (zy)n>2 soit décroissante, yy < ag < zy et
limyy = lim zy = ag quand N tend vers +oc.

4. En utilisant les suites (zy) et (zy) déterminées aux questions V.1. et V.3. donner une valeur
de ao avec une erreur inférieure a 10~ .
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Proposition de solution

Partie I

a) Comme (ay)nen est une suite de termes positifs ou nuls, on a, pour tout n € N, pour
tout z > 0,

n

Zanx” < f(z) < s.

k=0
A n fixé, par passage a la limite, lorsque = tend vers 1,

n
Z a, < S.
k=0

La série de terme général (a,,),en st donc majorée, elle est donc convergente puisque
les termes sont positifs ou nuls. Donc la série est normalement convergente sur [—1, 1],
et donc f est continue sur cet intervalle.

Pour tout n € N, pour tout |z| < 1, a,|z|" < ay.

Donc par théoreme de convergence dominée,

—+00 “+oo
lim E anx” = g an = S.
r—1,x<1

Ainsi, la série de terme général a,, est convergente de somme s. ‘

s34 1 +oo
b) Considérons s = 2-n=0

pas convergente.

(=1)"2™ sur | — 1,1[. La série de terme général (—1)" n’est
a) Soient 0 < # < y < 1. Soit n € N. Par hypothése, F"*2 > 0 sur [0, 1], donc F"*! est
croissante. Donc,
vt e [0,1], (1 —t)"FOHD(tz) < (1 — )" FOH (gy).

Donc, par croissance de l'intégrale,

/O 1(1 —nFMHD (1) At = <z>n+1 ra(y).

xn+1
0 < rp(x) <

n!

n+1
Ainsi, pour 0 <z <y <1, 0 < rp(x) < mp(y) (%) )

b) Soit 0 < = < 1. Soit y €]z, 1[. Comme F est C*, elle admet un développement de Taylor
avec reste intégralen 0 a l'ordre n et n+ 1, pour n € N :

n F(k) 0 n+1 F(k) 0
Py = T e SO )
k=0 k=0
Donc, pour tout n € N,
F(n+1)(0) n+1
rt1(y) = rn(y) — R
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Or, z > 0, et F"*! > 0. Donc la suite (r,,(y))nen est décroissante et minorée par 0, donc
converge dans R .
D’apres la question précédente,

n+1 1 n+1
0< r(2) < “"’“’n, / (1 — t)"FH) (1) dt = <"’y“) ra(y).
. 0

Donc par passage a la limite a droite, comme (r,(y)),cn converge, et par théoréme

d’encadrement,
lim r,(z) = 0.

n—oo

Donc F(z) = 329 FU0) yn

n!

‘Ainsi, pour 0 < z < 1, F(z) est somme de sa série de Taylor a l'origine.

c¢) Soit z €] — 1,0[. L'égalité de I.2.a) reste valable pour y €]0, 1].
De méme pour y €]0, 1], (rn(y))nen est décroissante. Donc les arguments précédents
restent valables, et le reste intégral (7,(z))nen tend vers 0.

‘Ainsi, pour —1 < z < 1, F(z) est somme de sa série de Taylor a l'origine. ‘

Partie II
1. Posons, pour tout 0 < z < 1, g(x) = WG(dw) de sorte que, pour tout x € [0, 1],

g(z)g"(z) + 2™ = T G(dz)G" (dz) + x™ .

Or, siz € [0,1[, dz € [0,d], donc G(dx)G" (dz) + d™Flz™+! =0,

Donc g(z)¢" (z) + xm‘H = 0.

De plus, ¢'(0) = d<m+1>/2 G’( ) =0, et g(0) = WG(CZ) = 0 par hypotheése sur G. Enfin,
g(0) = WG(O) d(m+3 72 > 0.

Ainsi, il existe g € E/(0,1) et un nombre k£ € R, tels que :

g(x)g"(x) + 2™ =0pour0 <z < 1
'(0) =

(1)
9(0)

Q

<

0
0
k

[0,1[xRfL xR — R?
2. Considérons la fonction f : (@ ( g)) . < q ) . Elle définit I’équation diffé-

/ xm+1
g

() =16 ()

La fonction f est clairement continue.

g
rentielle donnée :
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4.

Soient g; et go deux solutions de 1’équation différentielle. Comme ¢; et go sont continues
sur [0, 1], elles y sont bornées. De plus, elle sont nécessairement non nulles. Donc il existe
m € RY tel que m > |g1| et m > |go

|uu(j)fu(j)b=vknﬁv+ﬁ2“x:32

<+ o -0 <maxtr, Ll (%) - (%) 1

/ /
m? 5 92

Donc f est lipschitzienne par rapport a la deuxieme variable.
D’apres le théoreme de Cauchy-Lipschitz, il existe une unique solution maximale g telle

/
g'(0)=0
que .
{ g(0) = d(mis)/z

Via le changement de variable inverse, 1’équation différentielle posseéde une et une seule
G(0)=1
G'(0)=0 "

solution maximale telle que {

. On suppose que d = +oo. Supposons par ’absurde G(y) > 0 pour tout y > 0. Alors, pour

tout y > 0, G”(y) < 0. Donc G’ est décroissante sur R* . Or, G’(0) = 0, donc G'(y)(0, pour
tout y > 0. On peut trouver e > 0 et 6 > 0 tels que pour tout y > ¢, G'(x) < —¢ < 0. D’apres
le théoreme fondamental de 1’analyse, on a, pour tout y > 6,

Yy
Gly) = G) + /5 &' (@) dz < G(6) — e(y — 5).

En faisant tendre y vers 400, ce qui est possible puisque d = +o0,

lim G(y) = —oc.

Y—00
ce qui est contradictoire avec I’hypothese G(y) > 0 pour tout y > 0.
Si G est solution de 1’équation différentielle, nécessairement, G(y) > 0, pour tout y >
0. En effet, si G change de signe, comme G est continue, par le théoréme des valeurs

intermédiaires, il existe yo tel que G(yp), alors 0 = G(y0)G" (o) = —yg"**. Donc yo = 0. Or
G(0) =1, ce qui est contradictoire. Donc G est de signe constant, et G > 0.

a) D’aprés la question précédente, G est décroissante, donc admet une limite finie ou
infinie en d. Or, G(y) > 0 pour tout y € I, donc la limite est finie. On peut donc
prolonger G en d par continuité.

b) 1l suffit de montrer que G(d) = 0, puisque G est continue sur [0,d] et C? sur [0,d|.
Si G(d) >0, G"(y) = —% est prolongeable par continuité en d et G’ I'est égale-
ment, donc G vérifie I’équation différentielle sur [0, d]. D’apres le théoréme de Cauchy-
Lipschitz, G est prolongeable dans un voisinage de d, ce qui est absurde car elle est
supposée maximale.

Partie III
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1. a)Soit £ = {z €[0,1], gi(x) = g2(x)}. Posons E est un ensemble non vide car contient 1
et est minoré par 0 donc admet une borne inférieur zy < 1. Il existe une suite (x,),, de
FE qui converge vers xg.

Or, pour tout n € N, (g2 — g1)(x,) = 0. Par passage a la limite et continuité de g — g1,
(92 — g1)(z0) = 0.

Comme z(y = inf(FE) et go — g1 est continue, pour tout x < g, g2(x) > g1(x).

Ainsi, il existe xg €]0, 1] tel que

Vx €]0,1], g1(z) < g2(x) et g1(xo) = g2(zo).

b) Par hypothése sur g;, g2 et h, pour tout x € [0, x¢],

91(x) < ga(x)

donc
2xh(x) o 2xh(x)

@) T g

ie.
g1 (z) < gy (x).

Donc (g2 — g1)” est positive sur [0, zo[, donc (g2 — g1)" est croissante sur [0, zo[. Or,
(92—¢1)"(0) = 0 donc (g2 —g1)’ est positive sur cet intervalle. Donc gs — g7 est croissante
sur [0, zo|.

Ainsi, pour tout z € [0, zo[, g2(x) — g1(x) = g2(0) — ¢1(0) > 0. Par passage a la limite
en z,, g2(xo) — g1(xo) > 0, ce qui est contradictoire avec la question précédente.

2. a) g1 — g2 est continue sur [0, 1], dérivable sur |0,1[ et (g1 — 92)(0) = (g1 — g2)(1) = 0.
D’apres le théoréme de Rolle, il existe =1 €]0, 1] tel que (g1 — ¢g2)'(z1) = 0.

g1(z1) = g2(z1)

g1(z1) = gy(x1)
le théoréeme de Cauchy-Lipschitz, g; = g, ce qui est contradictoire avec I’hypothése.

Supposons par 'absurde que gi(x1) = g2(z1). On a alors { . D’apres

Ainsi, il existe z; €]0, 1] tel que

g1(w1) # ga(@1) et gi (1) = gh(a1)-

b) Comme (g1 — ¢2)" est continue sur [0, 2], dérivable sur |0, z1[, et (g1 — g2)’(0) = (g1 —
g2)'(z1) = 0, d’apres il le théoreme de Rolles, il existe x2 €]0, 1] tel que (g1 — g2)" (x2) =
0, ce qui est contradictoire avec le théoreme de Cauchy-Lipschitz.

Partie IV

1. L'existence d’une unique solution dans F(0,1) est donnée par le théoreme de Cauchy-
Lipschitz. Par récurrence immédiate, on montre que pour tout n € N, ¢( est dérivable
sur [0, 1[.
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2. Soit n > 1. D’apres la formule de Leibniz, pour tout x € [0, 1],
n+1 n+ 1
0= (o) V@) = Y- (" )PP o)
k=0
Donc pour tout z € [0, 1],

)y e ()W (@)g "R (@)
9" (x) =
g9(z)

Pour n = 0, on a, pour tout = € [0, 1],

2+ 4(2)g"(x)

B) () =
97 (x) =
) 9(x)
3. Comme g € F(0,1), ¢ est négative sur [0, 1].
Montrons par récurrence sur n > 2 que :
Vk < n,Vz € [0,1], F™(z) >0 (H1)

— n = 2 : vrai d’apres ce qui précede
— Soit n > 2 tel que ;. D’aprées la question précédente,

n—1 (nfl)g(k) (x)g(”+1_k) (CC)

(n+1) ) = — k=1 \ k
) g9(z)
S (G FW (@) PR ()
9()
>0

par hypothese de récurrence et g(0) > 0.
Comme ¢” est négative, ¢’ est décroissante. Or, ¢’(0) = 0, donc F’ = —¢’ est positive, et
F(x) = —(g9(x) — ¢g(0)) est positive (car g est décroissante).

Ainsi, pour tout n € N, F(")(z) > 0.

4. Comme F est C™ sur [0, 1], et pour tout n € N, pour tout = € [0,1[, F™(z) > 0, d’aprés la
question I.2.c), F' est somme de sa série de Taylor en 0. Soit x € [0, 1].

+oo
FM©)
F(x) = Z n'( )x
n=0 ’

De plus, par hypothese sur g,

lim F(z) = g(0) > 0.

z—1,x<1

et d’apres la question précédente,

FM(z) >0, Vo e [0,1].
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Donc d’apres la question I.1.a), pour tout z € [0, 1],

n!
n=0
RIS CONTY
g
o(0) gy = -y 410
n=1 ’

ie.

5. Montrons par récurrence surn > 1 que
vk < n, ¢g®(0) # 0 si 3|k, et ¢°(0) = 0 sinon (H2)

—n=1:comme g € F(0,1), nécessairement, ¢(0) > 0. Par hypothese, ¢'(0) = 0.
— Soit n > 1 tel que H-
—Sin+1=0 mod 3,

n—1
1 n —
(n+1) _ L1 ( ) (n+1—k) (k)
g (0)g'™(0)
9(0) &=\ K
1 n—1
_ (n+1—k) (k)
=——~ > g (0)g™(0)
90) =
k=0 mod 3

Or, par hypothese de récurrence, comme n+1—k =0 mod 3 pour tout £ =0 mod 3,

n+1( )7&0

— Sin+1# 0 mod 3, pour tout k£ € [1,n—1], on ne peut avoir simultanément n+1—k =
0 mod 3 etk =0 mod 3. Donc par hypotheése de récurrence, "+ (0) = 0.
Donc H,,+1 est vérifiée.

6. Montrons par récurrence sur n > 1 que

b
V1 <k <n, g®0(0) = —(3k) 5 (H3)
)
—n=1:0ona 5 3
—31b,
PO ===
— Soit n > 1 tel que H3.
3n+1
1 3n+1
(3n+3) () _ (k) (3n+3—k)
g 0)=- < >g 0)g 0
(0) mmiz R PIC) (0)
= 71 <3n T 1> (3p) (0)g(3n+3-39) ()
9(0) =~
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b1
(3n+3 — 3p)l— P

1 3n+1 b
=——— 3p)l .2
9(0);( 3p >(p) ag’ !

2n+2—-2p—1
(304 3)! <= (3n +2 —3p)(3n + 3 — 3p)
=TT ontl § : bpbni1-p
a2t p=1 (3n +2)(3n + 3)
(3n 4+ 3)! (Bn+2-3p)(n+1—p)
= T gl Z bpbnt1-—p

(Bn+2)(n+1)

p=1
B4 (Brn+2)(n+1-p  3p(n+1-p) -
@ 2 Gt Brr2)ntl) pontl=p
Bn+3) <~ (n+1-p 3p(n+1-—p)
_ bybrs1—
a2t p; nt+1l  Bn+2)(n+1)) Py
B (3n+3)!zn: 2n+1-p) 6p(n+1-—p) bob
2a2n+1 = n+1 (3n+2)(n+1) 'pUn+1—p
Bn+3) <~ (n+1-p P 6p(n + 1 —p)
= -7 - bbn —
2(137"“rl ; n+1 +n—|—1 Bn+2)(n+1)) 7" e

en intervertissant des termes

:_(3n+3)!§":<1_ 6p(n+1—p)
(

2271 = 3n+2)(n+1)

) bpbni1—p-

Partie V

1. Soit N € N. Posons, pour tout z > 0, Py(x) = z — Sy (). Py est clairement C? sur R%, et

al 2n—1
Vo > 0, Py(z Z T41>0

n=1

car b, est strictement positif par définition.
Donc Py est strictement croissante sur R’ .
Or,
lim Py(z) = —o0, et lim Py(z)=1>0.

z—0t T—+00

D’apres le théoréme de la bijection, il existe un unique zy > 0, tel que Py(zn) = zn.

Ainsi, chaque équation Sy (z) = x admet une et une seule racine positive x .

Comme b,, > 0 pour tout n € N, et la suite (Py)yen+ €st une suite décroissante de fonctions
croissantes, (zn)n>1 est croissante donc admet une limite finie ou infinie.

De plus,

g(3n

PN(ao):Z >Zg 1):0.

n=0

10
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Donc VN > 1, zy < ag. Notons z la limite de (zy).
(Sn)n>1 est une suite croissante de fonctions décroissantes, donc admet une limite S.
Pour N > 1, on a, pour tout p > 0,

Sn(@n+p) < Sn(zn) < Snap(zn),

ie.
Sn(@N+p) < 2N < Sn4p(@N).

Par passage a la limite, par continuité de Sy sur R,
Sn(ag) < Sny(x) <z < S(xy) < S(ag).

puisque zy < ag.
Or,

3n)! — (3n)!

(3n) o2 . (3n)
9( 0 _ 94 5(0) = g(1) + 9(0) = ao.

N
S(on) = Jim (o) = Jm -3
n=1

Donc par passage a la limite quand N — oo.

ap < < ag.
Donc la suite (xy) converge vers ay.
2. Soit x > ay.
400 b
P(z) =z — Z 1;2:71
n=1
+o0 n—1
11 1 6k(n — k)
=xr— — — bpbn—i | 1
3x 22239:2”1]; P k( n(3n—1)>
+00 n—1 +oo n—1
11 1 1 1 6k(n — k
—rT 3 T g Z p2n—1 Z brbn—r + D) Z 22(n—1) n(3n — 1)bkb”—k
=1 k=1 n=2 k=1
1 1 +o0 1 n—1
J— —_— PR p— 2 —
=z 5 22 Z; ~In 3 kz:l brbp_r + 5 (Q(a:) T° + 3>
400 2
1 bn,
5=+t a0 (X )
n=1

Ainsi, pour tout z > ag, P(z) = § (x 4+ 1 (Q(m) - (X ﬁ)z))

11
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3. Posons, pour tout z > 0, Qn(z) = Tn(z) — % + 2. On a, Qu est C? sur RY, et

, (20— 2)(2n — )3 (n)
(x) = nzz o +2>0.
Or,
— lim, o QIN( ) = —00,
— limy 400 Qy () =
— lim; 0 Qn(z) = +OO,
— limy 100 QN () =

En notant my > 0 le reel tel que Q’y(mxy) on a donc le tableau de signes et de variations
suivant :

x 0 my +00
() + +
Qn (@) - +
+00 +00
QN \ /

Or,
+00 b 2
Qn(ao) < Q(ao) = —ag + (Z [Egnn_1> = (5(ao) — ao) (S(ao) + ao) = 0.
n=1

Donc QN(mN) < 0.

Donc @y admet deux racines positives yy < zy qui sont de part et d’autre de ag. (Qn)n>2
étant une suite croissante puisque Ty l'est, nécessairement (yx)nv>2 est croissante et
(zn)nN>2 est décroissante, et on a

YN S YN+1 < o < ZN+1 < ZN-

Les suites (yn) et (zn) étant monotones, et bornées, elles sont convergentes. Notons y et
z leur limite. De I'inégalité précédente, on tire

y<ap <z

Soit Ny > 2. Pour tout N > Ny, Qn(yn) =0, donc

No +o00
2 o(n) 2 ®(n)
2 2
?/N—§+Zyzn72 Sy —3+) s =0
n=2 n=2 yN
Donc par passage a la limite,

> O(n) _2
Z 2n—2 < g -y
n=2 Yy
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Ceci étant vrai pour tout Ny > 2, par passage a la limite, la série ) -, ;;ﬁ—@g converge, et

Q(y) <0.

Donc P(y) = 0.
Si par I’absurde y < ag, alors

R 1 1
y—aozzbn( n—1 2n1>>0’
n=1 Yy

ce qui est contradictoire. Donc y = ag.
On montre de facon analogue que z = ag.

Ainsi, limyy = lim zy = ag.

. Il suffit par exemple de calculer x5 et z5. On a by = % by = %, d(2) = 1—15 d(3) = %.
1

3 est racine du polynéme X2 — £X — 4 qui a une racine positive £ + % Donc zy =

(24 %)1/2 ~ 0,89. De méme, 23 est la plus grande racine du polyndme X2 —2X + . Donc
29 ~ 1.0.

13



