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Sujet — Ulm et Cachan, épreuve commune 1994

Préambule

Ce préambule comprend divers notations et résultats que les candidats pourront utiliser sans
démonstration.

On désigne par E l’espace vectoriel sur le corps des complexes C formé par les fonctions conti-
nues définies sur R à valeurs dans C et qui sont périodiques de période 2π.

Pour n ∈ Z, en ∈ E est l’élément en(x) = einx, x ∈ R. À f et g dans E, on associe le nombre
complexe :

(f, g) =
1

2π

∫ π

−π
f(x)g(x)dx

et on note ‖f‖2 =
√
(f, f). On admettra que (·, ·) est un produit scalaire qui fait de E un espace

préhilbertien sur C.
On désigne par ‖ · ‖∞ la norme de la convergence uniforme sur E :

‖f‖∞ = sup{|f(x)|, x ∈ R.

On admettra que E muni de cette norme est complet.

Pour N ∈ N, EN désigne l’espace vectoriel engendré par en pour n ∈ Z, n ∈ [−N,N ]. On désigne
par DN l’élément de EN : DN =

∑N
n=−N en et on pourra utiliser que, pour tout x ∈]0, 2π[,

DN (x) =
sin(N + 1

2)

sin x
2

.

Pour m ∈ N∗, on désigne par Fm l’anneau Z/mZ des classes d’équivalence dans Z modulo m.

Étant donné une suite (un)n∈Z, on dira que la « série de terme général (un)n∈Z est absolument
convergente » (en abrégé (un)n∈Z est une série S.A.C.) si la série de terme général (|u−n| +
|un|)n∈N est convergente. On notera alors

∑
n∈Z un ou

∑+∞
n=−∞ un la somme de cette série où :∑

n∈Z
un = u0 +

∑
n⩾1

(u−n + un).

On admettra sans démonstration que tous les résultats sur les S.A.C. indexés par N s’étendent
aux S.A.C. indexées par Z et par exemple si (an)n∈Z et (bn)n∈Z sont telles que (|an|2 + |bn|2)n∈Z
est une S.A.C, alors (anbn)n∈Z est une S.A.C. et∣∣∑

n∈Z
anbn

∣∣ ⩽ (∑
n∈Z

|an|2
) 1

2
(∑
n∈Z

|bn|2
) 1

2 (Inégalité de Cauchy-Schwarz).

Dans tout le problème, N désignera un entier supérieur ou égal à 1 qui pourra varier.

Partie I

À f ∈ E, on associe la suite de ses coefficients de Fourier (fn)n∈Z :

fn = (en, f) =
1

2π

∫ π

−π
f(x)e−inx dx.
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1. Soit f ∈ E, montrer que (|fn|2)n∈Z est une S.A.C. et que sa somme est

1

2π

∫ π

−π
|f(x)|2 dx.

2. Soit (un)n∈Z est une S.A.C., on désigne par SN l’élément de E : SN =
∑N

n=−N unen.Montrer
que (SN )N⩾1 converge vers un élément u de E pour la norme ‖ · ‖∞.

Quels sont les coefficients de Fourier de u?

3. Soit (un)n∈Z définie par un = 0 pour n ⩽ 0, u1 = −1 et un = 1
n(n−1) pour n ⩾ 2.

Montrer que l’élément u de E obtenu par le procédé de la question I.2. n’est pas dérivable
en x = 0 (on pourra écrire pour N ⩾ 2 arbitraire et x 6= 0,

Imu(x)− u(0)

x
= ImSN (x)− SN (0)

x
+

∞∑
n=N+1

sinnx
n(n− 1)x

,

Imz désignant la partie imaginaire de z ∈ C et conclure en prenant x = 1
N ).

4. On désigne par ΣN l’élément de E : ΣN =
∑N

n=1
en
n .

Montrer que la suite (ΣN )N⩾1 est de Cauchy dans E pour la norme ‖ · ‖2.

5. Montrer que si la suite (ΣN )N⩾1 converge vers σ ∈ E pour la norme ‖ · ‖2, alors pour tout
x ∈ R,

u(x) = (eix − 1)σ(x),

où u a été défini en I.3.

6. Déduire des questions I.3. et I.5. que E muni de la norme ‖ · ‖2 n’est pas complet.

Partie II

1. Étant donné f ∈ E, montrer qu’il existe un et un seul élément g de EN tel que ‖g − f‖2
réalise le minimum de ‖h− f‖2 lorsque h parcours EN .

On notera PNf au lieu de g.

2. Montrer que PN est un projecteur de E sur EN et que pour tout f ∈ E,

‖PNf‖2 ⩽ ‖f‖2.

3. a) Montrer que pour tout x ∈ R,

(PNf)(x) =
1

2π

∫ π

−π
f(y)DN (x− y)dy.

b) Montrer que pour tout x ∈ R,

(PNf)(x) =
1

2π

∫ π

−π
f(x− y)DN (y)dy.

4. On désigne par αN la borne supérieure de l’ensemble des nombres ‖PNf‖∞ lorsque f
décrit la boule unité de (E, ‖ · ‖∞). Montrer que αN ⩽

√
2N + 1.
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5. On désigne par LN le nombre LN = 1
2π

∫ π
−π |DN (x)|dx, et pour ε > 0, ψεN l’élément de E

défini par

ψεN (x) =
DN (x)√
ε+D2

N (x)
, x ∈ R.

Montrer, en utilisant les ψεN que αN ⩽ LN (on pourra monter que pour tout y ∈ R,

0 ⩽ |y| − y2√
ε2 + y2

=
ε|y|√

ε+ y2(
√
ε+ y2 + |y|)

⩽
√
ε).

6. Montrer que lorsque N tend vers l’infini, LN est équivalent à 4
π2 logN .

7. Que pouvez-vous conclure (en vous inspirant de la question I.2.) ?

Partie III

On désigne par H1 le sous-espace de E formé par les éléments f tels que

((1 + n2)|fn|2)

est une S.A.C.

On note alors pour f ∈ H1, ‖f‖1 = (
∑

n∈Z(1 + n2)|fn|2)
1
2 .

1. Montrer que si f ∈ E est de classe C1 sur R, alors f ∈ H1 et ‖f‖21 = ‖f‖22 + ‖f ′‖22. Récipro-
quement si f ∈ H1, f est-elle de classe C1 sur R?

2. Montrer que E1 = C1(R,C) ∩ E est dans dans E pour la norme ‖ · ‖1.

3. Soit f ∈ H1, montrer que :

‖PNf − f‖2 ⩽
1

N + 1
‖f‖1.

4. En écrivant, pour g ∈ E1, x et y dans R,

g2(x)− g2(y) = 2

∫ x

y
g(t)g′(t)dt,

montrer qu’il existe une constante K1 ∈]0,+∞[ telle que pour tout f ∈ H1, ‖f‖∞ ⩽
K1‖f‖

1
2
2 ‖f‖

1
2
1 .

5. En déduire que pour tout f ∈ H1 et N ⩾ 1,

‖PNf − f‖∞ ⩽ K1

N + 1
‖f‖1,

et expliquer brièvement l’intérêt de cette inégalité en terme d’approximation de fonctions
et justifier l’introduction de l’espace H1.

Partie IV

1. Montrer que si f ∈ H1, ‖f‖2 ⩽ ‖f‖1.

2. Montrer que ‖ · ‖1 est une norme sur H1 et que H1 muni de cette norme est complet.

3. Montrer qu’il existe une constante K2 telle que pour tout f ∈ H1,

‖f‖∞ ⩽ K2‖f‖1.
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4. Soit (gp)p∈N une suite d’éléments de H1 telle que :

∀p ∈ N, ‖gp‖1 ⩽ 1.

a) Montrer qu’il existe une application strictement croissante ψ de N dans N telle que
pour tout n ∈ Z, la suite des produits scalaires ((gψ(p), en))p∈N soit convergente. On
note alors ℓn la limite de cette suite.

b) Montrer que la suite de fonctions SN , où SN =
∑N

n=−N ℓnen converge vers une fonction
ℓ ∈ E pour la norme ‖ · ‖∞.

c) Montrer que ℓ ∈ H1.

d) Montrer par exemple, qu’en général ‖gψ(p) − ℓ‖1 ne tend pas vers zéro lorsque p tend
vers +∞.

Partie V

On désigne par xj le point 2π
2N+1j pour j ∈ Z. On observe alors que pour f ∈ E, f(xj) ne dépend

que de la classe de j modulo 2N + 1, ce qui permet de parler de f(xj) pour j ∈ F2N+1.

1. Montrer que la matrice carrée d’ordre 2N + 1 (eiℓxj )0⩽j⩽2N, 0⩽ℓ⩽2N a pour inverse la ma-
trice : ( 1

2N + 1
e−iℓxj

)
0⩽j⩽2N, 0⩽ℓ⩽2N

.

2. a) Soit f ∈ E. Montrer qu’il existe un unique élément de EN (noté CNf ) tel que :

∀j ∈ F2N+1, (CNf)(xj) = f(xj).

b) Montrer que CN est une application linéaire de E dans EN .

c) Montrer que CN 6= PN (on pourra remarquer que CNe2N+1 = e0).

3. On désigne par E2N+1 l’ensemble des applications de F2N+1 dans C, on note (zk)k∈F2N+1

ces applications.

a) À z ∈ E2N+1, on associe ẑ : k 7−→ ẑk de Z dans C défini par :

ẑℓ =
1

2N + 1

∑
k∈F2N+1

e−iℓxkzk.

Montrer que ẑℓ ne dépend que de la classe de ℓ modulo 2N + 1. Ceci nous permet de
considérer ẑ comme un élément de E2N+1.

b) On dit que ẑ est la transformée de Fourier discrète (T.F.D.) de z. On note φ = (φk)k∈F2N+1

la T.F.D. de l’application j 7−→ f(xj). Montrer que :

CNf =
N∑

k=−N
φǩek

où ǩ est la classe de k modulo 2N + 1.

4. Soit h ∈ E2N , montrer que :

1

2π

∫ π

−π
h(x)dx =

1

2N + 1

N∑
j=−N

h(xj).
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5. a) Pour f et g dans E, on note :

[f, g] =
1

2N + 1

N∑
j=−N

f(xj)g(xj).

Montrer que si f et g sont dans EN , [f, g] = (f, g).

b) Montrer que pour tout f , g dans E,

[f − CNf, g] = 0.

c) Calculer [en, em].

6. Soit f ∈ H1 et ℓ ∈ Z. Montrer que (fℓ+(2N+1)k)k∈Z est une S.A.C. et que :

CN (f) =
∑

ℓ∈F2N+1

CN,ℓ(f)eℓ,

CN,ℓ =
∑
k∈Z

fℓ+(2N+1)k.

7. a) Montrer que pour tout f ∈ E, on a :

f − CNf = gN − CNgN avec gN = f − PNf.

b) Montrer qu’il existe une constante K3 ∈]0,+∞[ telle que pour tout f ∈ H1,

‖f − CNf‖2 ⩽
K3

N + 1
‖f‖1.

8. Pour quelle raison pratique préfère-t-on CN à PN ?

Partie VI

On se donne un entier M ⩾ 1 et on désigne par ω un nombre complexe tel que ωM = 1. À tout
élément z de EM (EM est l’ensemble des applications de FM dans C), on associe l’élément ẑ de
EM défini par :

ẑℓ =
∑
k∈FM

ωkℓzk

et on note ẑ = T.F.D.(ω,M)(z).

1. En considérant que les ωkℓ ont été calculés une fois pour toutes, quel est le nombre d’opé-
rations (additions et multiplications) nécessaires pour obtenir ẑ en fonction de z ? On
notera SM ce nombre.

2. On suppose queM est pair :M = 2M1. En remarquant que :

ẑℓ =
∑

k1∈FM1

ω2k1ℓz2k1 +
∑

k2∈FM1

ω(2k2−1)ℓz2k2−1,

montrer que T.F.D.(ω,M) peut s’effectuer à l’aide de deux opérations T.F.D.(ω2,M1).
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3. On suppose queM = 2n, n ∈ N. On désigne par Σn le nombre d’opérations pour effectuer
T.F.D.(χ, 2n) où χ ∈ C vérifie χ(2n) = 1. Montrer que Σn ⩽ 2Σn−1 + 2n+1 et en déduire
que :

Σn ⩽ 2M log2M

(où log2M = n par définition).

4. En supposant que les calculs sont effectués sur un ordinateur faisant 108 opérations par
seconde, comparer les temps de calculs correspondant à SM avec M = 2n et σn pour
n = 20, 25 et 30. On représentera les résultats sous forme d’un tableau.

5. On suppose plus généralement que M = PQ où P et Q sont deux entiers supérieurs ou
égaux à 1. Montrer que T.F.D.(ω,M) peut se faire en 2M(P +Q) opérations.

6. Appliquer ce qui précède au calcul de CNf pour f ∈ H1.
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Proposition de solution

Partie I

1. D’après le théorème de Parseval, la série de terme général (|fn|2)n∈Z converge vers

‖f‖22 =
1

2π

∫ π

−π
|f(x)|2 dx.

2. Soit (un) une suite S.A.C.

Soit (n, p) ∈ (N∗)2.

‖Sn+p − Sn‖∞ = sup |
−n−1∑
k=n−p

ukek −
n+p∑

k=n+1

ukek|

⩽ sup |
n+p∑

k=n+1

ukek + u−ke−k|

⩽ sup
(

n+p∑
k=n+1

|uk|+ |u−k|

)

⩽ sup
(

+∞∑
k=n+1

|uk|+ |u−k|

)
→

n→∞
0 reste d’une série convergente.

Donc (SN ) est une suite de Cauchy dans (E, ‖ · ‖∞) complet, donc converge pour la norme
‖ · ‖∞ vers un élément u.

Pour tout n ∈ N, pour tout k ∈ Z, x 7−→ ukek(x)en(x) est continue.

Pour tout x ∈ [−π, π],

|ukek(x)e−n(x)| = |uk| S.A.C.

Donc la série
∑

k∈Z ukeken converge normalement sur [−π, π]. Par intégration terme à
terme d’une série de fonctions,

(en, u) =
1

2π

∫ π

−π

(
+∞∑

k=−∞
ukek(x)

)
e−n(x)dx

=
1

2π

∫ π

−π

+∞∑
k=−∞

uk

∫ π

−π
ek(x)e−n(x)dx

= un.

Ainsi, les coefficients de Fourier de u sont les termes de la suite (un)n∈Z.
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3. D’après la question précédente, comme (un)n∈Z est une S.A.C., (SN )N⩾1 converge, et

Im
(
u(x)− u(0)

x

)
= Im

(
SN (x)− SN (0)

x

)
+

+∞∑
n=N+1

sin(nx)
n(n− 1)x

.

En posant x = 1
N ,

Im
(
u( 1

N )− u(0)
1
N

)
= Im

(
SN (

1
N )− SN (0)

1
N

)
+

+∞∑
n=N+1

sin( nN )N

n(n− 1)

= N

(
Im
(

N∑
n=2

ei
n
N − 1

n(n− 1)

)
+

+∞∑
n=N+1

sin( nN )

n(n− 1)

)
.

Or,
—
∣∣∣N∑+∞

n=N+1
sin( n

N
)

n(n−1)

∣∣∣ ⩽ N
∑+∞

n=N+1
1

n(n−1) = N
∑+∞

n=N+1(
1

n−1 − 1
n) =

N
N = 1

— ∀N ⩾ 2, ∀n ⩽ N , 0 < n
N ⩽ 1 < π

2 . Par concavité de sin sur
[
0, π2

]
, 2
π(n−1)N ⩽ sin( n

N
)

n(n−1) .

Mais limN→∞N
∑N

n=2
2

π(n−1)N = limN→∞
∑N

n=2
2

π(n−1) = +∞.

Donc limN→∞ Im
(
u( 1

N
)−u(0)
1
N

)
= +∞.

u n’est pas dérivable en 0.

4. Pour tout p, q ∈ N,

‖Σp+q − Σp‖22 = ‖
p+q∑

n=p+1

en
n
‖22 =

p+q∑
n=p+1

1

n2
⩽

+∞∑
n=p+1

1

n2
−→
p→∞

0.

Donc ΣN est de Cauchy dans E pour la norme ‖ · ‖2.

5. Pour tout n ∈ Z,
|(en,Σn)− (en, σ)|2 ⩽ ‖ΣN − σ‖22 −→

N→∞
0

Donc

∀k ∈ Z, (ek, σ) =
{

0 si k ⩽ 0
1
k si k ⩾ 1

D’où,
∀n ∈ Z, (en, (eix − 1)σ) = (en, u)

Donc par injectivité des coefficients de Fourier, u(x) = (eix − 1)σ(x).

6. On a
u(x)− u(0)

x
=
eix − 1

x
−→
x→0

iσ(0)

car σ ∈ E, ce qui est contradictoire puisque u n’est pas dérivable en 0.
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E muni de la norme ‖ · ‖2 n’est donc pas complet.

Partie II

1. Posons g =
∑N

n=−N (en, f)en ∈ EN .

On a
∀n ∈ J−N,NK, (g − f, en) = (en, f)− (en, f) = 0.

Donc g − f ∈ E⊥

Or, pour tout h ∈ EN ,

‖hf‖22 = ‖h− g︸ ︷︷ ︸
∈EN

+ g − f︸ ︷︷ ︸
∈E⊥

‖22 = ‖h− g‖22 + ‖g − f‖22

par le théorème de Pythagore.

Donc ‖h− f‖22 est minimal lorsque h = g.

2. On a

P 2
Nf = PN (PNf) =

N∑
n=−N

(en,
N∑

k=−N
(ek, f)ek)

=

N∑
n=−N

N∑
k=−N

(ek, f)(en, ek)

=

N∑
n=−N

(ek, f)

= PNf.

Donc PNf est un projecteur de E sur EN . Par théorème de Pythagore, pour tout f ∈ E,

‖f‖22 = ‖f − PNf‖22 + ‖PNf‖22.

Donc PN est un projecteur de E sur EN , et pour tout f ∈ E, ‖PNf‖22 ⩽ ‖f‖22.

3. a) Soit x ∈ R.

PNf(x) =
N∑

n=−N
(en, f)en(x)

=
1

2π

N∑
n=−N

∫ π

−π
f(y)e−iny dyeinx

=
1

2π

∫ π

−π
f(y)

N∑
n=−N

ein(x−y) dy

=
1

2π

∫ π

−π
f(y)DN (x− y)dy

9



Céline Wang

=
1

2π

∫ x+π

x−π
f(x− u)DN (u)du (u = x− y)

=
1

2π

∫ π

−π
f(x− u)DN (u)du car f est 2π-périodique.

4. Pour tout x ∈ R,

|PNf(x)| =
1

2π

∣∣∣∣∫ π

−π
f(x− y)DN (y)dy

∣∣∣∣
⩽ 1

2π

∫ π

−π
|f(x− y)| |DN (y)|dy

⩽ 1

2π

√∫ π

−π
|f(x− y)|2 dy

√∫ π

−π
|DN (y)|2 dy

(inégalité de Cauchy-Schwarz dans L1([−π, π])).
Or,

—
√∫ π

−π |f(x− y)|2 =
√∫ π

−π |f(y)|
2 dy =

√
2π‖f‖2 car f est 2π-périodique

—
√∫ π

−π |DN (y)|2 dy =
√
2π‖DN‖2 =

√
2π

√
2N + 1

Donc pour tout x ∈ R, |PNf(x)| ⩽
√
2N + 1‖f‖2

Donc ‖PNf‖∞ ⩽
√
2N + 1‖f‖2.

Donc αN ⩽
√
2N + 1.

5. On a
ε|y|√

ε+ y2(
√
ε+ y2 + |y|)

=
|y|(
√
ε+ y2 − |y|)√
ε+ y2

= |y| − y2√
ε+ y2

.

On a clairement

|y| − y2√
ε+ y2

⩾ 0

et
ε|y|√

ε+ y2(
√
ε+ y2 + |y|)

⩽
√
ε.

Alors

0 ⩽ |DN (x)| −
D2
N (x)√

ε+D2
N (x)

⩽
√
ε.

Donc, en intégrant entre −π et π et en multipliant par 1
2π l’inégalité,

LN ⩽
√
ε+

1

2π

∫ π

−π
DN (x)ψ

ε2

N (x)dx =
√
ε+ PNψ

ε2

N (0)

Or,
|PNψε

2

N (0)| ⩽ ‖PNψε
2

N ‖∞ ⩽ αN

car ‖ψε2N ‖∞ < 1.

Donc
∀ε > 0, LN ⩽

√
ε+ αN .
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Ainsi, αN ⩾ LN .

6. Soit x ∈ [−π, π]\{0}. Pour tout N ∈ N ,

DN (x) =
sin((N + 1

2)x)

sin x
2

=
sin(Nx) cos(x2 ) + sin(x2 ) cos(Nx)

sin x
2

= sin(Nx) cot(x
2
) + cos(Nx)

= 2
sin(Nx)

x
+ sin(Nx)(cot(x

2
)− 2

x
) + cos(Nx)

Or, cot( 2x) ∼
2
x , donc f : x→ sin(Nx)(cot(x2 )−

2
x)+ cos(Nx) est prolongeable par continuité

en 0. f étant continue sur [−π, π] elle y est bornée indépendamment de N parM ⩾ 0.

Alors, par inégalité triangulaire,∣∣∣∣22 sin(Nx)
x

∣∣∣∣−M ⩽ |DN (x)| ⩽
∣∣∣∣2 sin(Nx)

x

∣∣∣∣+M.

Par un changement de variable,

1

2π

∫ π

−π

∣∣∣∣2 sin(Nx)
x

∣∣∣∣dx =
1

π

∫ π

0

| sinu|
u

du.

Or, ∫ Nπ

0

∣∣∣∣sinuu
∣∣∣∣du =

N−1∑
k=0

∫ (k+1)π

kπ

| sinu|
u

du

⩽
N−1∑
k=1

1

kπ

∫ (k+1)π

kπ
| sin(u)|du+

∫ π

0

|sinu|
u

du

=
N−1∑
k=1

1

kπ

∫ π

0
| sin(u)|du+

∫ π

0

| sin(u)|
u

du

=
4

π

N−1∑
k=1

1

k
+

∫ π

0

| sin(u)|
u

du ∼
N→∞

4

π
ln(N).

Et, ∫ Nπ

0

∣∣∣∣sinuu
∣∣∣∣du ⩾

N−1∑
k=0

1

(k + 1)π

∫ π

0
| sin(u)|du ∼

N→∞

4

π
ln(N)

Donc
2

π

∫
0

| sinu|
u

du ∼
N→∞

4

π2
ln(N).

Ainsi, par encadrement, LN ∼
N→∞

4
π2 ln(N).

11
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7. On a
LN ⩽ ‖DN‖2.

Donc

lim
N→∞

‖DN‖2 = +∞.

Donc la norme de la suite d’opérateurs (PN )N tend vers l’infini.

Partie III

1. Soit f ∈ E de classe C1 sur R. On a
— ‖f‖22 =

∑
n∈Z |fn|2.

— ‖f ′‖22 =
∑

n∈Z |f ′n|2.
Or, pour tout n ∈ Z,

f ′n =
1

2π

∫ π

−π
f ′(x)e−inx dx

=
1

2π

([
f(x)e−inx

]pi
−π + in

∫ π

−π
f(x)e−inx dx

)
intégration par parties

=
in

2π
fn

Donc ‖f ′‖22 =
∑

n∈Z n
2fn.

Ainsi, ‖f‖22 + ‖f ′‖22 = ‖f‖21.

Réciproquement, en considérant la suite (un)n∈Z définie dans la question I.I.3., (1+n2)
n2(n−1)2

∼
1
n2 , donc (un)n∈Z est une S.A.C., mais n’est pas de classe C1.

La réciproque est fausse.

2. Soit f ∈ E. PNf ∈ C1(R,C) ∩ E. Donc par la question précédente,

‖PN‖22 + ‖(PNf)′‖22 = ‖PNf‖21.

Or,

‖PNf(x)‖22 =
∑N

n=−N |fn|2 et ‖(PNf)′(x)‖22 =
∑N

n=−N n
2|fn|2.

Donc ‖PNf(x)‖22 + ‖(PNf)′(x)‖22 =
∑N

n=−N (1 + n2)|fn|2 →
N→∞

‖f‖21.

Ainsi, PNf
∥·∥1−−−−→
N→∞

f .

Ainsi, E1 est dense dans E pour la norme ‖ · ‖1.

3. Soit f ∈ H1.

‖PNf − f‖22 =
∑

|n|⩾N+1

|fn|2

12
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=
∑

|n|>N+1

(1 + n2)|fn|2

1 + n2

⩽ 1

1 + (N + 1)2

∑
|n|⩾N+1

(1 + n2)|fn|2

⩽ 1

(N + 1)2

∑
|n|>N

(1 + n2)|fn|2

=
1

(N + 1)2
‖f‖21.

Ainsi, pour tout N ∈ N, ‖PNf − f‖2 ⩽ 1
N+1‖f‖1.

4. Soient f ∈ E1 et x, y ∈ [−π, π]. On a

f2(x) = f2(x) + 2

∫ x

y
f(t)f ′(t)dt.

Alors, par l’inégalité triangulaire,

|f(x)|2 ⩽ |f(y)|2 + 2

∫ x

y
|f(t)f ′(t)|dt ⩽ |f(y)|2 + 2

∫ π

−π
|f(t)f ′(t)|dt.

En intégrant par rapport à y, et en multipliant par 1
2π

|f(x)|2 ⩽ ‖f‖22 + 2

∫ π

−π
|f(t)f ′(t)|dt.

Or, par inégalité de Cauchy-Schwarz,∫ π

−π
|f(t)f ′(t)|dt ⩽ 2π‖f‖2‖f ′‖2.

Donc
|f(x)|2 ⩽ ‖f‖22 + 4π‖f‖2‖f ′‖2 ⩽ 4π‖f‖2(‖f‖2 + ‖f ′‖2).

Par convexité de t 7−→ t2,

‖f‖2 + ‖f ′‖2 ⩽
√
2(‖f‖22 + ‖f ′‖22)1/2 =

√
2‖f‖1.

Donc
|f(x)|2 ⩽ 4π

√
2‖f‖1‖f‖2.

D’où, par passage au sup, comme f est 2π-périodique,

‖f‖∞ ⩽ 4π
√
2‖f‖1/21 ‖f‖1/22

Par densité, de E1 dans H1 et continuité des normes, pour tout f ∈ E,

‖f‖∞ ⩽ 4π
√
2‖f‖1/21 ‖f‖1/22 .

13
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5. Par question précédente,

‖PNf − f‖∞ ⩽ K1‖PN − f‖1/22 ‖PNf − f‖1/21 .

Or, par le théorème de Pythagore, ‖PNf − f‖2 ⩽ ‖f‖2 et par question III.2.,

‖PNf − f‖2 ⩽
1

N + 1
‖f‖1.

Donc ‖PNf − f‖∞ ⩽ K1√
N+1

‖f‖1.

E1 est dense dansH1 pour la norme ‖·‖∞. Les fonctions deH1 peuvent être uniformément
approchées par des fonctions C∞.

Partie IV

1. Soit f ∈ H1.

‖f‖22 =
∑
n∈Z

|fn|2 ⩽
∑
n∈Z

(1 + n2)|fn|2 = ‖f‖21.

Ainsi, si f ∈ H1, ‖f‖2 ⩽ ‖f‖1.

2. Soient f, g ∈ H1 et λ ∈ C.
— ‖f‖1 ⩾ 0 par somme de termes positifs ;

— ‖λf‖1 =
(∑

n∈Z(1 + n2)|(en, λf)|2
)1/2

=
(
|λ|2

∑
n∈Z(1 + n2)|fn|2

)1/2
= |λ|‖f‖1 ;

— ‖f‖1 = 0 si, et seulement si ∀n ∈ N, |fn| = 0 i.e. f = 0 ;
— Si f + g = 0, l’inégalité est clairement vraie. Supposons que f + g 6= 0

‖f + g‖21 =
∑
n∈Z

(1 + n2)|fn + gn|2

⩽
∑
n∈Z

(1 + n2)|fn||fn + gn|+
∑
n∈Z

(1 + n2)|gn||fn + gn|

⩽

√∑
n∈Z

|fn|2 +
√∑
n∈Z

|gn|2

√∑
n∈Z

(1 + n2)|fn + gn|2

= (‖f‖2 + ‖g‖2)‖f + g‖1
⩽ (‖f‖1 + ‖g‖1)‖f + g‖1 inégalité de la question précédente

Alors ‖f + g‖1 ⩽ ‖f‖1 + ‖g‖1.

Donc ‖ · ‖1 est une norme sur H1.

Soit (fp)p∈N une suite de Cauchy.

Soit ε > 0. Il existe n0 ∈ N tel que pour tout p ⩾ q ⩾ n0, ‖fp − f q‖1 ⩽ ε

Pour n0 ∈ N ainsi fixé, on a en particulier

∀j ∈ Z,∀p ⩾ q ⩾ n0, |fpj − f qj | ⩽
√
ε
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Donc à j fixé, (fpj )p est une suite de Cauchy dans C qui est complet. Donc la suite (fpj )p est
convergente dans C vers un certain fj .

De plus, pour tout k ∈ N,
k∑

j=−k
(1 + j2)|fpj − f qj |

2 ⩽ ε.

Donc en faisant tendre q vers +∞,

k∑
j=−k

(1 + j2)|fpj − fj |2 ⩽ ε.

Par passage à la limite, quand k → +∞,∑
j∈Z

(1 + j2)|fpj − fj |2 ⩽ ε.

On pose f =
∑

n∈Z fnen.

Donc limp→∞ ‖fp − f‖1 = 0 donc en particulier, f − fp ∈ H1.

D’où f = (f − fp) + fp ∈ H1.

Ainsi, toute suite de Cauchy dans H1 converge dans H1 donc H1, donc H1 est complet.

3. D’après III.4., pour tout f ∈ H1, ‖f‖∞ ⩽ K1‖f‖1/22 ‖f‖1/21 .

D’après IV.1., ‖f‖2 ⩽ ‖f‖1. Donc ‖f‖∞ ⩽ K1‖f‖1 avec K1 ∈]0,+∞[.

Ainsi, il existe K2 telle que pour tout f ∈ H1, ‖f‖∞ ⩽ K2‖f‖1.

4. a) Soit (gp)p∈N une suite d’éléments de H1 telle que pour tout p ∈ N,

‖gp‖1 ⩽ 1.

Comme Z est dénombrable, notons ses éléments (an)n∈N.

Soit p ∈ N. Comme ‖gp‖1 ⩽ 1, en particulier, |(gp, ea0)| ⩽ 1
1+a20

. Donc la suite ((gp, ea0))p∈N
est bornée. Par théorème de Bolzano-Weierstrass, il existe φ0 : N −→ N strictement
croissante telle que ((gφ0(p), ea0))p∈N converge.

Comme la suite ((gp, ea1))p∈N est bornée, en particulier, ((gφ0(p), ea1))p∈N est bornée.

Par le théorème de Bolzano-Weierstrass, il existe φ1 : N −→ N strictement croissante
telle que ((gφ0(φ1(p)), ea1))p∈N converge.

Par récurrence, comme ((gφ0◦φ1◦···◦φn(p), ean+1))p∈N est bornée, par le théorème de
Bolzano-Weierstrass, il existe φn+1 : N −→ N strictement croissante telle que

((gφ0◦φ1◦···◦φn+1(p), ean+1))p∈N soit convergente.

Posons, pour n ∈ N, ψ(n) = φ0 ◦ . . . φn(n).
ψ(n + 1) = φ0 ◦ · · · ◦ φn(φn+1(n + 1)). Or φn+1(n + 1) ⩾ n + 1 > n. Donc φ0 ◦ · · · ◦
φn(φn+1(n + 1)) > φ0 ◦ · · · ◦ φn(n) = ψ(n). Donc ψ est strictement croissante, et pour
tout n ∈ Z, ((gψ(p), en))p∈N est convergente.
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Ainsi, il existe une application strictement croissante ψ de N dans N telle que pour
tout n ∈ Z, la suite ((gψ(p), en))p∈N soit convergente.

b) Par passage à la limite, pour tout n ∈ Z, |ℓn| ⩽ 1
1+n2 . Donc (ℓn)n∈Z est une S.A.C.

D’après I.2., SN converge vers un élément ℓ ∈ E pour la norme ‖ · ‖∞.

c) Par unicité de la limite, ℓ =
∑+∞

n=−∞ ℓnen. Pour tout n ∈ Z, (en, ℓ) = ℓn, et (1+n2)|ℓn|2 ⩽
1

1+n2 , terme général d’une série convergente. Donc ((1 + n2)|ℓn|2) est une S.A.C.

Ainsi, ℓ ∈ H1.

d) Posons, pour n ∈ Z et p ∈ N,

gpn =


1

4(1+n2p2)
si p 6= n

1
4(1+n2p2)

+ 1

4
√

1+p2
si p = n.

La série de terme général (gpnen) est normalement convergente, donc gp =
∑

n∈Z g
p
n est

bien défini.

De plus, (1 + n2)|gpn|2 est le terme général d’une série convergente, et

‖gp‖21 =
1

4

∑
n∈Z

1 + n2

(1 + n2p2)2
+

1

4
⩽ 1

4

∑
n∈Z

1

1 + n2
+

1

4
⩽ 1.

On a, pour tout n ∈ N,
ℓn = lim

p→+∞
gpn = 0.

Pour tout p ∈ N,

‖gp − ℓ‖21 =
1

4

(∑
n∈Z

1 + n2

(1 + n2p2)2
+ 1

)
.

Or, par le théorème de convergence dominé,

lim
p→∞

∑
n∈Z

1 + n2

(1 + n2p2)2
= 0.

Donc

lim
p→∞

‖gp − ℓ‖1 =
1

4
.

Partie V

1. Notons A = (eilxj )0⩽l,j⩽2N et B = ( 1
2N+1e

−ilxj )0⩽l,j⩽2N .

Soit a, b ∈ F2N+1.

[AB]a,b =
∑
k=0

2NAa,kBk,b

=
∑
k=0

2Neiaxke−kxb
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=
1

2N + 1

∑
k=0

2Nei
2π

2N+1
k(a−b)

=

{
1 si a = b

0 sinon.

On montre de même que [BA]a,b = δa,b

Ainsi, la matrice carrée d’ordre 2N + 1 (eilxj )0⩽l,j⩽2N a pour inverse
( 1
2N+1e

−ilxj )0⩽j⩽2N,0⩽ℓ⩽2N .

2. a) Soit f ∈ E.

Notons F =

f(x1)...
f(xn)


Pour tout ℓ ∈ J0, 2NK,

[BF ]ℓ =
2N∑
j=0

Bℓ,jFj =
1

2N + 1

2N∑
j=0

e−iℓxjf(xj) =
1

2N + 1

N∑
j=−N

e−iℓxjf(xj)

car f est 2π-périodique.

Donc

[ABF ]k =
2N∑
ℓ=0

Ak,l[BF ]ℓ

=
2N∑
ℓ=0

eikxℓ
1

2N + 1

N∑
j=−N

e−iℓxjf(xj)

=

N∑
ℓ=−N

eiℓxk
1

2N + 1

N∑
j=−N

e−iℓxjf(xj).

Or AB = I2N+1.

Donc
∀k ∈ F2N+1, [ABF ]k = Fk,

i.e.

∀k ∈ F2N+1, f(xk) =
N∑

ℓ=−N
eiℓxk

1

2N + 1

N∑
j=−N

e−iℓxjf(xj).

Posons CNf = 1
2N+1

∑N
j=−N

∑N
l=−N f(xj)e

−iℓxjeℓ ∈ EN .

Pour tout j ∈ F2N+1,

CNf(xj) =
1

2N + 1

∑
a=−N

Nf(xa)
∑
b=−N

Neib(xa−xj) = f(xj).

Soient CN et C ′
N vérifiant pour tout j ∈ F2N+1, CNf(xj) = C ′

N (xj). Alors pour tout
j ∈ F2N+1, CN − C ′

N (xj) = 0. Or, CN − C ′
N est un polynôme trigonométrique de degré

inférieur à 2N ayant 2N + 1 racine. Donc CN = C ′
N .
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Ainsi, il existe un unique élément de EN noté CN (f) tel que ∀j ∈ F2N+1, (CNf)(xj) =
f(xj).

b) Soient f, g ∈ E et λ ∈ C. Pour tout j ∈ F2N+1

(CN (f + λg))(xj) = (f + λg)(xj) = f(xj) + λg(xj) = CNf(xj) + λCN (g)(xj)

Donc
CN (f + λg) = CNf + λCNg

c) Par définition, CN (e2N+1) ∈ EN . Donc

CN (e2N+1) =
N∑

j=−N
(ej , CN (e2N+1)).

Or, pour tout k ∈ F2N+1,

(ek, CN (e2N+1)) =
1

2N + 1

N∑
j=−N

e−ikxj =

{
0 si k 6= 0

1 sinon
.

Donc CN (e2N+1) = e0. Mais PN (e2N+1) = 0.

Donc CN 6= PN .

3. a) Soit ℓ ∈ Z. Par définition de ẑ, ẑ ne dépend que de ℓ.

Or,

ẑℓ+2N+1 =
1

2N + 1

∑
k∈F2N+1

e−i(ℓ+2N+1)xkzk =
1

2N + 1

∑
k∈F2N+1

e−iℓxkzk = ẑℓ.

Ainsi, ẑℓ ne dépend que de la classe de ℓ modulo 2N + 1.

b) On a, d’après V.2. :

CNf =
1

2N + 1

N∑
j=−N

N∑
ℓ=−N

f(xj)e
−iℓxjeℓ

=
N∑

ℓ=−N

 1

2N + 1

N∑
j=−N

f(xj)
φǰ

e−iℓxj

 eℓ

=

N∑
k=−N

φk̂ek.

Ainsi, CNf =
∑N

k=−N φk̂ek.
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4. Soit h ∈ E2N .

1

2N + 1

N∑
j=−N

h(xj) =
1

2N + 1

N∑
j=−N

N∑
ℓ=−N

(eℓ, h)eℓ(xj)

=
1

2N + 1

N∑
j=−N

N∑
ℓ=−N

[
1

2π

∫ π

−π
h(x)e−i2πℓxj dx

]
e2iπℓxj

=
1

2π

∫ π

−π

1

2N + 1

N∑
j=−N

N∑
ℓ=−N

h(x) e2iπℓ(xj−x)︸ ︷︷ ︸
=0 si ℓ ̸= 0

dx

=
1

2π

∫ π

−π

1

2N + 1

N∑
j=−N

h(x)dx

=
1

2π

∫ π

−π
h(x)dx.

Ainsi, pour tout h ∈ E2N ,
1
2π

∫ π
−π h(x)dx = 1

2N+1

∑N
j=−N h(xj).

5. a) Soient f et g dans E. Alors fg ∈ E2N . Donc d’après la question précédente,

[f, g] =
1

2N + 1

N∑
j=−N

h(xj) =
1

2π

∫ π

−π
h(x)dx = (f, g).

Ainsi, pour tous f, g ∈ EN , [f, g] = (f, g).

b) Soient f, g ∈ E.

[f − CNf, g] =
1

2N + 1

N∑
j=−N

(f(xj)− CNf(xj))︸ ︷︷ ︸
=0

g(xj) = 0.

Ainsi, pour tous f, g ∈ E, [f − CNf, g] = 0.

c) Soit m,n ∈ Z.

[en, em] =
1

2N + 1

N∑
j=−N

e
2iπ

2N+1
(m−n)j =

{
1 si m = n[2N + 1]

0 sinon
.

6. Soit f ∈ H1. Soit ℓ ∈ Z.

∑
n∈Z

|fn| =
∑
n∈Z

√
1 + n2√
1 + n2

|fn| ⩽
(∑
n∈Z

1

1 + n2

)1/2(∑
n∈Z

(1 + n2)|fn|2
)1/2

< +∞

par l’inégalité de Cauchy-Schwarz et hypothèse sur f .

Donc en particulier, la suite extraite (fℓ+(2N+1)k))k∈Z est une S.A.C.
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On a

CN (f) =
N∑

ℓ=−N

 1

2N + 1

N∑
j=−N

f(xj)e
−iℓxj

 eℓ.
Or, pour tout ℓ ∈ F2N+1,

1

2N + 1

N∑
j=−N

f(xj)e
−iℓxj = [eℓ, f ] = [eℓ, CNf ].

Avec

f =
∑
n∈Z

(en, f)en =

N∑
ℓ=−N

∑
k∈Z

(eℓ+(2N+1)k, f)eℓ+(2N+1)k,

par linéarité de CN ,
CNf =

∑
k∈Z

(eℓ+(2N+1)k, f)CN (eℓ+(2N+1)k).

Or, pour tous ℓ ∈ F2N+1, k ∈ Z, CN (eℓ+(2N+1)k) = eℓ.

Donc CNf =
∑

k∈Z(eℓ+(2N+1)k, f)eℓ.

Par linéarité à droite de [·, ·], pour tout j ∈ F2N+1,

[ej , CNf ] =
∑
k∈Z

(eℓ+(2N+1)k, f)[ej , eℓ] =
∑
k∈Z

(ej+(2N+1)k, f).

Donc pour tout ℓ ∈ F2N+1,

1

2N + 1

N∑
j=−N

f(xj)e
−iℓxj =

∑
k∈Z

(eℓ+(2N+1)k, f) =
∑
k∈Z

fℓ+(2N+1)k = CN,ℓ(f).

Ainsi, CN (f) =
∑

ℓ∈F2N+1
CN,ℓ(f)eℓ.

7. a) Soit f ∈ E.

CN (PNf) =
1

2N + 1

N∑
j=−N

N∑
ℓ=−N

PNf(xj)e
−iℓxjeℓ

=
N∑

ℓ=−N

 1

2N + 1

N∑
j=−N

PNf(xj)e
−iℓxj

 eℓ
=

N∑
ℓ=−N

[eℓ, PNf ]eℓ.

Or PNf et eℓ sont des éléments de EN . D’après V.5.a),

[eℓ, PNf ] = (eℓ, PNf) = (eℓ, f).

Donc CN (PNf) =
∑N

ℓ=−N (eℓ, PNf)eℓ = PNf .

f − CNf = f − PNf + PNf − CNf = gN + CNPNf − CNf = gN − CNgN .
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Ainsi, f − CNf = gN − CNgN .

b) D’après la question précédente,

‖f − CNf‖22 = ‖gN − CNgN‖22.

Or, gN ∈ E⊥
N et CNgN ∈ EN .

Donc
‖gN − CNgN‖22 = ‖gN‖22 + ‖CNgN‖22

et

‖CNgN‖22 = (CNgN , CNgN )

= [CNgN , CNgN ]

=
1

2N + 1

N∑
j=−N

CNgN (xj)CNgN (xj)

=
1

2N + 1

N∑
j=−N

gN (xj)gN (xj

‖gN‖22.

Or, d’après la question III.3.,

‖gN‖22 ⩽
K1

N + 1
‖f‖1.

Ainsi, ‖f − CNf‖2 ⩽ 2K1
N+1‖f‖1.

8. Le calcul de CN requiert des évaluations en un certain nombre de points tandis que celui
de PN nécessite de connaître la valeur des intégrales, ce qui est plus pénible.

Partie VI

1. Soit ℓ ∈ FM . Pour calculer ẑℓ, il faut 2M + 1 multiplications. La somme ayant (2M + 1)

termes, il faut 2M additions, soit 4M + 1 opérations.

ẑ étant entièrement définie par le calcul de tous les ẑℓ, le calcul de ẑ nécessite (4M +

1)(2M + 1) opérations.

2. Supposons queM = 2M1. Il est clair que

ẑℓ =
∑

k1∈FM1

ω2k1ℓz2k1 +
∑

k2∈FM1

ω(2k2−1)ℓz2k2−1

Posons x :
FM1 −→ C
k 7−→ z2k

et y :
FM1 −→ C
k 7−→ ω−ℓz2k−1

Alors
ẑ = T.F.D.(ω2,M1)(x) + T.F.D.(ω2,M1)(y).

Ainsi, T.F.D.(ω2,M1) peut s’effectuer à l’aide de deux opérations T.F.D.(ω2,M1).
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3. On suppose queM = 2n

Notons ẑ = T.F.D.(χ, 2n)(z). D’après ce qui précède,

ẑℓ =
∑

k1∈FM1

χ2k1ℓz2k1 +
1

χℓ

∑
k2∈FM1

χ(2k2)ℓz2k2−1.

Le calcul de ẑℓ peut s’effectuer à l’aide de deux T.F.D.(χ2, 2n−1) et une multiplication.
Comme pour ẑ0, la multiplication n’est pas nécessaire, on pourra effectuer 2n − (−2n) =

2n+1 multiplications supplémentaires pour calculer ẑ.

Ainsi, Σn ⩽ 2Σn−1 + 2n+1.

Par récurrence immédiate, Σn ⩽ 2nΣ0 + n2n+1.

PourM = 1, il n’y a pas de calcul à faire, donc Σ0 = 0.

Ainsi, Σn ⩽ 2M log2(M)

4.

n temps SM temps de Σn
20 8, 80.104 4, 19.107

25 9, 01.107 1, 68.109

30 9, 22.1018 6, 44.1010

5. Soient p ∈ N tel que 2p−1 ⩽ PQ ⩽ 2p. On peut majorer le nombre d’opérations par 2.2pp.

6. On considère M défini comme dans la question précédente. Le calcul de CMf nécessite
d’effectuer la transformée de Fourier discrète de f que l’on peut faire en 2M(P + Q)

opérations. À cela s’ajoutent les opérations élémentaires, soit 2M + 1 multiplications et
2M additions. Donc le calcul de CMf nécessite 2M(P +Q+ 2) + 1 opérations.
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