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Sujet — Ulm et Cachan, épreuve commune 1994

Préambule

Ce préambule comprend divers notations et résultats que les candidats pourront utiliser sans
démonstration.

On désigne par E l’espace vectoriel sur le corps des complexes C formé par les fonctions conti-
nues définies sur R a valeurs dans C et qui sont périodiques de période 27.

Pour n € Z, e, € E est I’élément e, (r) = ¢, 2 € R. A f et g dans E, on associe le nombre
complexe :

(19) = 57 | T@lgla)ds

et on note || f|l2 = +/(f, f). On admettra que (-,-) est un produit scalaire qui fait de F un espace
préhilbertien sur C.

On désigne par || - ||« la norme de la convergence uniforme sur E :

[ flloo = sup{|f(z)], z € R.

On admettra que F muni de cette norme est complet.

Pour N € N, Ey désigne I’espace vectoriel engendré par e, pourn € Z, n € [N, N]. On désigne
par Dy 1’élément de En : Dy = ZiV:_N e, et on pourra utiliser que, pour tout z €]0, 27|,
sin(N + 1)
Dy(z) = ———>
S1n b
Pour m € N*, on désigne par F,, ’anneau Z/mZ des classes d’équivalence dans Z modulo m.

Etant donné une suite (u,),cz, on dira que la « série de terme général (u,),cz est absolument
convergente » (en abrégé (u,),cz est une série S.A.C.) si la série de terme général (|u_,| +

|un|)nen est convergente. On notera alors ), u, ou ‘o up la somme de cette série ol :
E Up = Ug + E (U + Up).
neL n>1

On admettra sans démonstration que tous les résultats sur les S.A.C. indexés par N s’étendent
aux S.A.C. indexées par Z et par exemple si (a,,)nez et (by)nez sont telles que (|a,|? + |bn]?)nez
est une S.A.C, alors (a,by)nez est une S.A.C. et

1 1
| Z anbn| < (Z lan|?)2 ( Z |b,|?) 2 (Inégalité de Cauchy-Schwarz).
nez nez nez

Dans tout le probléeme, N désignera un entier supérieur ou égal a 1 qui pourra varier.

Partie I
A f € E, on associe la suite de ses coefficients de Fourier (f,)nez :

fo=(en f) = o [ F@)e™ da.

:27T o
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1. Soit f € E, montrer que (|f,|?*)nez est une S.A.C. et que sa somme est

1 s
o | F@)Pas,

2. Soit (up)nez estune S.A.C., on désigne par Sy I'élément de £ : Sy = ZﬁLV:_N Upep. Montrer
que (Sy)n>1 converge vers un élément v de E pour la norme || - [|co.
Quels sont les coefficients de Fourier de u ?

3. Soit (uy)nez définie par u,, = 0 pourn <0, u; = —1 et u, = ﬁ pour n > 2.

Montrer que I’élément u de E obtenu par le procédé de la question I.2. n’est pas dérivable
en x = 0 (on pourra écrire pour N > 2 arbitraire et x # 0,

u(x) — u(0) _ ImSN( x) — + Z sin nx

Im
T T n—l

n= N+1

Imz désignant la partie imaginaire de z € C et conclure en prenant x = %).

N en
n=1 n

4. On désigne par Xy 1'élémentde F : ¥y = >
Montrer que la suite (Xy)n>1 est de Cauchy dans E pour la norme || - |2.

5. Montrer que si la suite (X)n>1 converge vers o € E pour la norme || - ||2, alors pour tout

T € R,

ou u a été défini en 1.3.

6. Déduire des questions I.3. et I.5. que £ muni de la norme || - || n’est pas complet.

Partie II

1. Etant donné f € E, montrer qu'il existe un et un seul élément g de Ey tel que |lg — f]|2
réalise le minimum de ||k — f||2 lorsque h parcours Ey.

On notera Py f au lieu de g.

2. Montrer que Py est un projecteur de F sur Ey et que pour tout f € FE,

[1Pn fll2 < [ fll2-
3. a) Montrer que pour tout x € R,
(Pu1)@) = 5= [ H)Dx(e =) dy.
b) Montrer que pour tout z € R,
(Px)@) = 5 [ = 0)Dx(n) .

4. On désigne par ay la borne supérieure de ’ensemble des nombres ||Py f||~ lorsque f
décrit la boule unité de (E, || - [[«). Montrer que ay < v2N + 1.
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On désigne par Ly le nombre Ly = 5= [* |Dy(z)|dz, et pour ¢ > 0, /5 I'élément de E
défini par
Dy(z)

€+ D?V(w)

() = , T €R.

Montrer, en utilisant les ¢5; que ay < Ly (on pourra monter que pour tout y € R,

2

y eyl
0<lyl - - < Va).
VeZ+ 2 Vet yR(Ve+yi+yl)

Montrer que lorsque N tend vers l'infini, Ly est équivalent a % log V.

Que pouvez-vous conclure (en vous inspirant de la question 1.2.)?

Partie III

On désigne par H; le sous-espace de E formé par les éléments f tels que

(1 +n2) | ful®)

est une S.A.C.

On note alors pour f € H,

1.

. Montrer que si f € Hy,

1
fll= (Znez(l + n2)’fn‘2>2'
Montrer que si f € F est de classe C! sur R, alors f € H; et || f||? = ||f||? + || f'||3. Récipro-
quement si f € Hy, f est-elle de classe C' sur R?

Montrer que F; = C}(R,C) N E est dans dans E pour la norme || - ||;.

Soit f € Hy, montrer que :
1

N+1

1PN f = fll2 < [ f1]1-

En écrivant, pour g € F, x et y dans R,
x
@) - ) =2 [ (00t
Y

montrer qu’il existe une constante K; €]0,+oo[ telle que pour tout f € Hj,
11
K|l Iz 11T -

[flloo <

. En déduire que pour tout f € Hy et N > 1,

K,
N+1

et expliquer briévement l'intérét de cette inégalité en terme d’approximation de fonctions
et justifier I'introduction de l'espace H;.

1PN f = flloo <

[NAlSE

Partie IV
flla < I1£1h-

Montrer que || - |; est une norme sur H; et que H; muni de cette norme est complet.

Montrer qu’il existe une constante K> telle que pour tout f € Hq,

[ flloo < ol fll1-
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4. Soit (¢”)pen une suite d’éléments de H; telle que :
vpeN, [lg"h < L.

a) Montrer qu’il existe une application strictement croissante ) de N dans N telle que
pour tout n € Z, la suite des produits scalaires ((¢¥("), e,))yen soit convergente. On

note alors /,, la limite de cette suite.
N

n=—

b) Montrer que la suite de fonctions Sy, ou Sy = >
¢ € E pour la norme || - ||oo-

~ ¢nen converge vers une fonction

c) Montrer que ¢ € Hj.

d) Montrer par exemple, qu’en général | g¥(®) — ¢||; ne tend pas vers zéro lorsque p tend
vers +o0.

Partie V
21

On désigne par z; le point 3ny1J pour j € Z. On observe alors que pour f € E, f(x;) ne dépend

que de la classe de j modulo 2NV + 1, ce qui permet de parler de f(x;) pour j € Fony;.
1. Montrer que la matrice carrée d’ordre 2N + 1 (e?%i)o<j<an, 0<i<an @ pour inverse la ma-

trice :
1

(2N+1

e_wxj) . .
0<j<2N, 0<I<2N

2. a) Soit f € E. Montrer qu'il existe un unique élément de En (noté Cy f) tel que :
Vj € Fani1, (Cnf)(z;) = f(z)).
b) Montrer que Cy est une application linéaire de E dans Ey.

c) Montrer que Cy # Py (on pourra remarquer que Cyeant1 = €p).

3. On désigne par &n11 'ensemble des applications de Fon 41 dans C, on note (Zk)kngN+1
ces applications.

a)Azc Ean+1, Oon associe Z : k — 2 de Z dans C défini par :

A 1 —ilxy
=gy 1 Z e 2
k€FaN 1

Montrer que %, ne dépend que de la classe de ¢ modulo 2N + 1. Ceci nous permet de
considérer Z comme un élément de Eon 1.

b) On dit que 2 est la transformée de Fourier discrete (T.F.D.) de z. On note ¢ = (¢ )reFon .,
la TED. de I'application j — f(z;). Montrer que :

N
Cnf= > eiek
k=N

ou k est la classe de k modulo 2N + 1.
4. Soit h € Eyy, montrer que :

- N

—T
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5. a) Pour f et g dans FE, on note :

[f, 9] =

N
-N

2N1+1 :Z f(z)g(x;).

Montrer que si f et g sont dans En, [f,g] = (f,9)-
b) Montrer que pour tout f, g dans F,

c) Calculer ey, e,].

6. Soit f € Hy et ¢ € Z. Montrer que (f;(an+1)x)kez €st une S.A.C. et que :

Cn(f) = Z Cne(f)er

LeFan 41

Cnye = Z Jer Ntk
keZ

7. a) Montrer que pour tout f € F, on a:
f—Cnf=9gn—Cngn avec gn=f—Pnf.

b) Montrer qu’il existe une constante K3 €)0, +oo[ telle que pour tout f € Hy,

K3
N+1

If = Cnfll2 < [rale

8. Pour quelle raison pratique préfere-t-on Cy a Py ?

Partie VI

On se donne un entier M > 1 et on désigne par w un nombre complexe tel que w™ = 1. A tout
élément 2z de &) (£ est 'ensemble des applications de F,; dans C), on associe 1’élément Z de
&y défini par :

et on note 2 = T.F.D.(w, M)(2).

1. En considérant que les w"* ont été calculés une fois pour toutes, quel est le nombre d’opé-
rations (additions et multiplications) nécessaires pour obtenir Z en fonction de z? On
notera Sy, ce nombre.

2. On suppose que M est pair : M = 2M;. En remarquant que :

2 2k14 2ko—1)¢
=) g+ Y WPy,
k1€Fmy ko €F pry

montrer que T.F.D.(w, M) peut s’effectuer a 'aide de deux opérations T.F.D.(w?, M;).
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. On suppose que M = 2", n € N. On désigne par ¥, le nombre d’opérations pour effectuer
T.F.D.(x,2") ou x € C vérifie x*") = 1. Montrer que ¥, < 2%,_; + 2"*! et en déduire
que :

Yn < 2Mlogy M

(ou logy M = n par définition).

. En supposant que les calculs sont effectués sur un ordinateur faisant 10% opérations par
seconde, comparer les temps de calculs correspondant a S); avec M = 2" et o, pour
n = 20,25 et 30. On représentera les résultats sous forme d’un tableau.

. On suppose plus généralement que M = P(Q ou P et () sont deux entiers supérieurs ou
égaux a 1. Montrer que T.F.D.(w, M) peut se faire en 2M (P + Q) opérations.

. Appliquer ce qui précede au calcul de Cy f pour f € H;.
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Proposition de solution

Partie I

1. D’apres le théoréme de Parseval, la série de terme général (|f,,|?),cz converge vers

113 = = / (@) da.

2 J_,

2. Soit (u,) une suite S.A.C.
Soit (n,p) € (N*)2,

—n—1 n+p
|Sn+p — Snllec = sup| Z Upe) — Z upex|
k=n—p k=n+1
n+p
<sup| Z uger, + u_pe_g|
k=n+1
n+p
< sup ( Z lug| + ]uk|>
k=n+1

+oo

< sup ( Z lug| + ]u_k|) — 0 reste d'une série convergente.

n—oo
k=n+1

Donc (Sy) est une suite de Cauchy dans (E, || - ||«) complet, donc converge pour la norme
| - [loc Vers un élément w.

Pour tout n € N, pour tout k € Z, v — ugeg(x)e,(x) est continue.

Pour tout z € [—m, 7],

luger(z)e_n(z)| = |ug| S.A.C.

Donc la série ), , upere, converge normalement sur [—m,7]. Par intégration terme a
terme d’une série de fonctions,

us +oo
(en,u) = 2177/ ( Z ukek(x)> e_pn(z)de

—T

k=—0o0
1 w T ™
= 277/ Z uk/ ex(z)e_p(z)dx
Ly —T
= U

= n-

Ainsi, les coefficients de Fourier de u sont les termes de la suite (uy, )nez.
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3. D’apres la question précédente, comme (u,),cz est une S.A.C., (Sy)n>1 converge, et

n=N+1 (n—1)z

En posant x = N

n=N+1
—N<Im (i el}@—l) N —i:.o sin() )
n=2 n(n N 1) n=N+1 (n B 1)

Or,

Sll’l

N
— NN a 1‘ N vimmn = N ovn G — ) =~v =1

—VN >2,¥n<N,0< £ <1< %. Par concavité de sin sur [0, %], DN S ala)-
2

Mais limpy_yo0o IV an? W = limpn_e0 22712 D = +00.

1y_
Donc limy_o Im (M) = +00.
~
u n’est pas dérivable en 0.
4. Pour tout p,q € N,
p+q e p+q 1 +oo 1
2 n 2
[Xp+q — Zpllz = | Z —llz = Z — < Z — — 0.
n n n* p—oo
n=p+1 n=p+1 n=p+1
Donc Xy est de Cauchy dans F pour la norme || - ||2.

5. Pour tout n € Z,
|(en, 2n) — (en, ) < BN =3 — 0
N—oo

Donc
0sik <0

Vk € Z, (ek,a):{ %sik}l

D’ou,
Vn € Z, (en, (e — 1)) = (en, u)

Donc par injectivité des coefficients de Fourier, u(z) = (¢®* — 1)o(z).

6. Ona )
_ iw
u(x) — u(0) _e io(0)
x x x—0

car o € F, ce qui est contradictoire puisque u n’est pas dérivable en 0.
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E muni de la norme || - |2 n’est donc pas complet.

Partie II

. Posons g = ij:_N(en,f)en € Ey.
On a

vne [[_NuN]]a (g—f,en):(en,f)—(en,f)20.
Donc g — f € E+
Or, pour tout h € Ey,

sz =Ih—g+g—Fl5=Ih—gll5+llg—fl3
—— S~
ebEn cEL

par le théoreme de Pythagore.

Donc ||k — f||3 est minimal lorsque h = g.

. Ona
N N
PYf=Pn(Pxf)= ) (ens Y (ers flex)
n=N  k=—N
N N
= Z Z (ekvf)(envek)
n=—N k=—N
N
= > (e f)
n=—N
= Pnf.

Donc Py f est un projecteur de F sur FEy. Par théoreme de Pythagore, pour tout f € F,

IF13 = ILf = PxfI5 + [ PaFII3-

Donc Py est un projecteur de E sur Fy, et pour tout f € E,

Py fII3 < |1 f1I3-

a) Soit x € R.
N
PNf(l') = Z (ena f)en(:z:)
n=—N
1 X ™ . .
_ —iny nx
=5 nz_:N . flye dye
1 [ N
=5n | S X ey
n=—N
1 T
) f(y)Dn(z —y)dy
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1 T+
=5 | f@-wDy(wdu(=2-y)
™ Tr—T
1 ™
=5 f(x —u)Dy(u)du car f est 2w-périodique.
™ —T
4. Pour tout z € R,
1 ™
Pus@l =5 | [ e =Dyt a
1 K
< — — D
- | 15— lIDvwldy

<2;¢[]ﬂx—wﬁm¢[:DmmF@

(inégalité de Cauchy-Schwarz dans L'([—, 7])).

Or,
_ \/ffﬂ |f(z — y)\2 = \/ffﬂ |f(y)|2dy = \/27||f]|2 car f est 2r-périodique

_ \/ij Dy (y)>dy = V27 ||Dxl2 = vV27v2N + 1
Donc pour tout = € R, |Py f(x)| < V2N + 1| |2
Donc [Py flleo < V2N + 1| fll2.

Donc ay < V2N + 1.

5. Ona

elyl :!yl(\/E+y2—!yD:‘ oy
Vet i (Ve + 2+ 1yl Ve+y? Ve+y?

On a clairement

y
ly| - —F—= 20
\/6+y2
et
5|y| <\/g.
Vet 2 (Ve+ v+ lyl)
Alors 9
D
0< D) - —2D__ < 2
e+ D%(z)

Dongc, en intégrant entre —7 et 7 et en multipliant par % I'inégalité,

1 s
Ly <VE+ 5 [ Da@UR (@) ds = VE+ Pyi (0)
Or,
2 2
PNuR O] < [Pxei o < an

car Hzﬁ?\?Hoo < 1.

Donc
Ve > 0, LNS\/E-‘FCVN.

10
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\Ainsi, ay > Ly.

. Soit z € [—m, 7]\{0}. Pour tout N € N,

sin((N + 3)z)

sin §

sin(Nz) cos(5) + sin(3) cos(Nx)

sin §

= sin(Nx) cot(g) + cos(Nz)

sin(Nx)
T

Dy(x) =

2
=2 + sin(Nx)(cot(g) — —) +cos(Nz)
x
Or, cot(2) ~ 2, donc f : 2 — sin(Nz)(cot(%) — 2) + cos(Nz) est prolongeable par continuité
en 0. f étant continue sur [, 7] elle y est bornée indépendamment de N par M > 0.
Alors, par inégalité triangulaire,

— M < |Dy(z)| <

'22sm(]\7m) M.

X

’ 2sin(Nz)

Par un changement de variable,

1 [™|2sin(Nx) dle/ﬂsmu du.
2 J_, T T Jo U
Or,
/N7r sin u du:N_l/(kH)”Slnu]d
0 u o kT u
N-1
1 (k+1)m
< / |sm(u)ydu+/ [sinul
kT Jix 0 U
k=1
N-1
1 K K
= — \sm(u)]du—k/ |sin(w) d
km 0 0 u
k=1
N-1
4 1 ™| si 4
_ 4 +/ |Sln(u)|d N In()
™ k 0 u N—oo T
k=1
Et,
N | - N-1 T
1
/ LA / sin(u)|du ~ - In(N)
0 u (k + 1) —o0 T
k=0
Donc 5 )
/\smu|d ~ Ay
™ Jo U N—oo T

Ainsi, par encadrement, Ly ~ - In(N).
N—o00
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7. On a
Ly < [[Dnll2.

Donc

lim ”DN”2 = +00.
N—o0
Donc la norme de la suite d’opérateurs (Py )y tend vers l'infini.

Partie III

1. Soit f € E de classe C' sur R. On a

— If1I3 = Xez 1 fal*.
— 113 = Xnez 1 £

Or, pour tout n € 7Z,
1 1 i ! —ine
fo=s | F@ed
1 —ingrpi [T — L . .
=5 ([f(x)e mz]lilﬁ +in /_7T f(z)e™™* d:v) intégration par parties
m

Donc ||f'[|3 = 3,z 1" fa-
Ainsi, f||% + ||le% = Hf”%

(14+n?)

n2n—12 =

Réciproquement, en considérant la suite (uy,),cz définie dans la question I.1.3.,
#, donc (uy,)necz est une S.A.C., mais n’est pas de classe C!.

‘ La réciproque est fausse.

2. Soit f € E. Pyf € C}(R,C) N E. Donc par la question précédente,
1PN 1I5+ 1(Pxf)'[I5 = 1P FIIE-

Or,
IPnf(@)]3 = S0 [fal? et [(Paf) (2)]I3 = SNy 02| ful
Donc || Py f(2) 3 + [I(Pnf) ()13 = S0 _y@+02)fa> = |IfI3.

N—oo
lI-Il2

Ainsi, Pnf —— f.
N—oo

‘Ainsi, E, est dense dans E pour la norme || - [|1.

3. Soit f € Hj.

IPvf=fllE= D [fal®

In|=N+1

12



Céline Wang

1+ n2)|f,[2
_ oy 4l

14 n?

Z (1+ n2)|fn‘2

In|>N+1

[n|>N+1
- 1
T 14 (N +1)2

1

2 2
< mTIE |EN(l +n)|fal

1

- Ik

Ainsi, pour tout N € N, [Py f — fll2 < 55 [ f11-

. Soient f € Ey et z,y € [-m,7].On a
Fx) = ) +2 / FOF () dt.
y

Alors, par 1'inégalité triangulaire,

x T

f@F <@l +2 [ rormlae< il 2 [ 1rorola
Yy -
En intégrant par rapport a y, et en multipliant par %

fmﬁaw%a/umﬂmw

—T

Or, par inégalité de Cauchy-Schwarz,

/|mwww<%wwﬂu

—T

Donc

(@) ]* < IF1I + Al £ llz < Al Fll2Cfllz + [17]]2)-

Par convexité de t — t2,
£l + 112 < V201£03 + 1F113)2 = V2 f]1-

Donc

@) < 4nv2| fllllf ]

D’ol, par passage au sup, comme | est 27-périodique,

1 £lloo < 4mv2I| FI2 (1 £113/2

Par densité, de £ dans H; et continuité des normes, pour tout f € F,

1£lloo < 4nvV2IFIN 211115

13
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5. Par question précédente,

1PN f = flloo < K1l Py — FIN 21 Pxf = £V,

Or, par le théoreme de Pythagore,

Pnf— fll2 < ||f|l2 et par question III.2.,

L

Prf— flla <
1Pxf = Sl < s

[nalie

Donc | Pxf — flloo < 3251 fl1-

E, est dense dans H; pour la norme ||-||«. Les fonctions de H; peuvent étre uniformément
approchées par des fonctions C*.

Partie IV
1. Soit f € H;.

IF13 =D 1fal® < D@+ ) fal® = 1.

neZ neL

\Ainsi, si feHy, |fllz <|f]h-

2. Soient f,g € Hy et A € C.
— || f|l1 = 0 par somme de termes positifs;
— Ml = (Sez( + 73l (en AR = (AR Sez(t+n)£al?) = WII£l
— ||fll1 = 0si, et seulement si Vn € N, |f,| =01ie. f=0;
— Si f + g =0, I'inégalité est clairement vraie. Supposons que f + g # 0

If +gllF =D _(1+n2)|fn + gnl®

ne”

< S0+ 1) fallfo + gnl + S0+ 02)gal [ + a]

nezZ ne”L

< \/Z|fn\2+\/2\gn|2 ST (1 +02) fo + gnl?

nez neEL neL

= (Ifll2 + llgll2) 1 + gllx
< (IflL + gl f + gll1 inégalité de la question précédente

Alors || f +glly < [[fllx + llglls-

‘Donc | - |1 est une norme sur H;.

Soit (f?)pen une suite de Cauchy.
Soit € > 0. Il existe ng € N tel que pour tout p > ¢ > ny,

fF=filh<e
Pour ngy € N ainsi fixé, on a en particulier

Vj € Z,Yp=q=no, |f] - [l < Ve

14
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4.

. D’apres I11.4., pour tout f € Hy,

Donc a j fixé, (fj’.’)p est une suite de Cauchy dans C qui est complet. Donc la suite (f]’-’)p est
convergente dans C vers un certain f;.

De plus, pour tout £ € N,
k

YA+ =P <

j=—k
Donc en faisant tendre ¢ vers +oo,

k

S U+ A - f <

j=—k
Par passage a la limite, quand k& — +o0,

Y a+ANT - flP <.

JEZ

On pose f =3 7 fnén.
Donc limy,_,~ || f? — f|1 = 0 donc en particulier, f — f? € H;.

Dol f = (f — f7) + f* € Hy.

‘Ainsi, toute suite de Cauchy dans H; converge dans H{ donc Hy, donc H; est complet.

1/2 1/2
Fflloo < EIFIS2 111
Fll2 < |IfIli- Done || flleo < E1||f]l1 avec K; €]0, +00].

D’apres IV.1.,

‘Ainsi, il existe K telle que pour tout f € Hy, || fllco < K2l fl|1-

a) Soit (¢”)pen une suite d’éléments de H; telle que pour tout p € N,
9Pl < 1.

Comme Z est dénombrable, notons ses éléments (a,)nen-

(9P, €q0)| < ﬁ Donc la suite ((¢7, €4y ))pen
est bornée. Par théoreme de Bolzano-Weierstrass, il existe ¢y : N — N strictement

croissante telle que ((g#°(), e,,))pen converge.

Soit p € N. Comme ||¢g”||; < 1, en particulier,

Comme la suite ((g?, eq,))pen est bornée, en particulier, ((¢?°(®), e, ))pen est bornée.

Par le théoreme de Bolzano-Weierstrass, il existe ¢; : N — N strictement croissante
telle que ((g#o(#1()), €a;))peN coOnverge.

Par récurrence, comme ((g%o“’lo”'o“’"(p),ean+1))p€N est bornée, par le théoreme de
Bolzano-Weierstrass, il existe ¢,,+1 : N — N strictement croissante telle que

((groopromopnti(P) e, ),y soit convergente.
Posons, pour n € N, 1)(n) = pgo...on(n).

Y(n+1) = pgo-0ep(pns1(n+1)). Or ppp1(n+1) =2 n+1 > n. Donc ggo---o
On(nr1(n+1)) > pgo---0py(n) =1(n). Donc ¢ est strictement croissante, et pour
tout n € Z, ((g¥"), e,,))pen st convergente.
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Ainsi, il existe une application strictement croissante i) de N dans N telle que pour
tout n € Z, la suite ((g¥?), e,))pen soit convergente.

0] < Hﬁ Donc (£,,)nez est une S.A.C.

b) Par passage a la limite, pour tout n € Z,

‘D’aprés [.2., Sy converge vers un élément ¢ € E pour la norme || - ||cc. ‘

c) Par unicité de la limite, ¢ = >/ _ £,e,,. Pour tout n € Z, (e,, ) = £y, et (1+n?)|4,|% <
1

11,7, terme général d'une série convergente. Donc ((1 + n?)|¢,|?) est une S.A.C.

| Ainsi, ¢ € H,.

d) Posons, pourn € Z etp € N,

) sip#n

gh =

1 1 S
I(1+n2p?) + 4\/1+p2 S1p=n.

La série de terme général (ghe,) est normalement convergente, donc g” = >~ -, g5, est
bien défini.
De plus, (1 + n?)|gh|? est le terme général d’une série convergente, et

1 14+ n? 1 1 1 1

PQ:fE L — 7<f§ < 1.

9”17 A (1+n2p2)2+4\4 1+n2+4\
neZ nez

On a, pour tout n € N,
= lim g¢b=0.

p——+o00

Pour tout p € N,

1 1+ n?
P g2 =2 57 1].
g 17 4< (1+n2p2)2+ )

neL

Or, par le théoreme de convergence dominé,

1+ n?
lim ——— = 0.
N

Donc 1
i p _ = _
Jim [lg7 = £l = 7.

Partie V

_ 1 o
1. Notons A = (ellxﬂ)()gl’jgg]v et B = (2N+16 lej)0<l7j<2N.

Soit a,b € Fony1.

[ABlap = > 2N Aq By

k=0
_ Z 2N€iaxk€—ka:b
k=0

16
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- 27
_ N iz k(a—b)
2N + 1 kz_:o c

_f 1sia=0b
~ | 0 sinon.

On montre de méme que [BA], = 045

Ainsi, la matrice carrée d'ordre 2N + 1 (el®)yq <oy a pour inverse
1 —ilx;
(anvrre” "™ )o<j<aN,0<e<2N -

a) Soit f € F.

f(@1)
Notons F' = :
Pour tout ¢ € [0, 2NT],

1
BF@—ZB&JJ QNHZe 2 f (25) = 2N+1Zemjf z;)

7=0

car f est 2m-périodique.

Donc
2N
[ABF], = Z Ap[BF),
£=0
2N N
_ Z eik$[ Z —zﬁccjf
£=0 j=—N
N 1
_ it —ilx; g,
= 2. o AZ e f(x)).
{=—N j=—N
Or AB = IQN_H.
Donc
Vk € Fonga, [ABF]k = I,
ie.

N N
) 1 .
_ lxy —ilx; .
Vk € Font1, f(zr) = Z ¢ ON T Z e f(wj).
{=—N j=—N
Posons Cn f = sxry Sy Sy flaj)e e, € Ey.
Pour tout j € Fony1,
1 ib(xg—x;
On f(w)) = Y Nf(xa) Y NePomwi) = f(a).

2N + 1 a=—N b=—N

Soient Cy et C) vérifiant pour tout j € Foni1, Cnf(z;) = Ci(z;). Alors pour tout
J € Font1, Cn — Cy(zj) = 0. Or, Cny — C' est un polynéme trigonométrique de degré
inférieur a 2NV ayant 2N + 1 racine. Donc Cy = C}.
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Ainsi, il existe un unique élément de Ex noté Cn(f) tel que Vj € Fony1, (Cnf)(z5) =

f(x;).

b) Soient f,g € E et A € C. Pour tout j € Fon1g
(Cn(f +A9)(xj) = (f + Ag)(z5) = f(xj) + Ag(x;) = On f(x5) + ACN(9)(x5)

Donc
CNn(f+ Ag) = Cnf+ ACng

c¢) Par définition, Cy(ean+1) € En. Donc

N
v(eani1) = Y (e, Cnleanyn)).
j=—N
Or, pour tout k£ € Fony1,
N
1 . 0sik#0
C ikz; _ )
(e, Cn(e2n41)) = ON + 1 ZNG { 1 sinon

=

Donc CN(62N+1) = €. Mais PN(62N+1) = 0.
‘Donc Cn # Py.

a) Soit ¢ € Z. Par définition de 2, Z ne dépend que de /.
Or,

1 . 1 )
A N —i(0+2N+D)zp . _ Z —ilzy,, _ 3
ZP42N+1 — T (& Zk = e Zk = Z¢.
AT ON +1 2 2N +1
kE]FQN+1 k€F2N+1

Ainsi, Z, ne dépend que de la classe de ¢ modulo 2N + 1.

b) On a, d’apres V.2. :

1
"2 (ﬂv+1,§: flag)e™™ | e

Ainsi, Oy f = S0 _ v @k
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4. Soit h € Eoy.

1 N 1 N N
j=—N j=—N/{=—N
1 X [ 1 /”
_ Z Z h( ) —i27lx d 2imlx;
N + 1 FfNZ:_ o
_ i 217r€ (x;—x) dz
\ﬁ,_/
2 —N{=—N =0sil#0
N
1 4 1
=5 SN 1 _Z:N (x)dz
1 T
=5 h(z)dx

Ainsi, pour tout i € Eay, 5= [*_h(z)dz = 2N1+1 Z;V:_N h(zx;).

5. a) Soient f et g dans E. Alors fg € Fon. Donc d’aprées la question précédente,

N T

£.9)= g1 2 he) = o [ he)de = (f).

j=-N o

‘Ainsi, pour tous f,g € En, [f,q9] = (f,9).

b) Soient f,g € F.

[f —Cnf, 9]

Ainsi, pour tous f,g € E, [f —Cnf, 9] =

c) Soit m,n € Z.

[€n,€em] =

ZN: s : {lsim:n[2N+1]

0 sinon

6. Soit f € Hy. Soit £ € Z.

1/2 1/2
Z|fn—z¢%fn\(zlfﬁ> <Z<1+n2>|fn12> < +oo

nez nez neL neEL

par l'inégalité de Cauchy-Schwarz et hypothese sur f.
Donc en particulier, la suite extraite (fo4(an+1)k))kez €st une S.A.C.
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On a

N .
1 Z f(:z:j)e_wxj ey.

v ELERIEEN

Z flaj)e ™ = leq, f] = [ee, On f].

Avec
f= Zem €n = Z § (eor@N+1)ks feor@N+1)ks
nez —N keZ
par linéarité de Cy,

Cnf = (errnsiym F)ON(ers@nsn)-
kez

Or, pour tous ¢ € Fon1, k € Z, CN(€e+(2N+1)k) = €.
Donc On f = D pez(Coran+iyn e

Par linéarité a droite de [+, |, pour tout j € Fon 41,
e, ONF1 = (ecrenim Hles ed =D (ejr@n+iyr f)-
keZ keZ

Donc pour tout £ € Fon 1,

N
1 —ilx;
ON 1 > Fap)e ™ = (eroninm £) = Y frreniir = Cnalf).
J=N

keZ keZ

Ainsi, On(f) = Zee]FgNH Cne(f)ee

7. a) Soit f € E.

N N
PP IR

Cn(PNf) =
“Nt=—N
N . N
_ N,—tlx;
= 2 Jang 2 Pl e
(=—N J=—N
N
= > ler, Pu flee

14

—-N

Or Py f et ey sont des éléments de E. D’apres V.5.a),
lee, PN f] = (ee, Pn f) = (e, f)-

Donc Cn (P f) = 320 x(es, Py f)es = Py f.
J=Cnf=f-Pnf+Pnf-Cnf=gn+CNPyf—Cnf=gn—Cngn.

20



Céline Wang

‘AinSi' f—Cnf=gn—Cngn.

b) D’apres la question précédente,

If = Cnfll3 = llgn — Cngnlls-
Or, gn € Ex et Ongn € En.
Donc
lgn — Cngnlls = lgn |3 + ICrgnll3

et

ICngn|3 = (Cngn, Cngn)

= [Cngn,Cngn]
1 N —_—
=N 11 > Cngn(z;)Cngn ()
j=—N
1 N
=N+l > gn(ay)gn(z;
j=—N
lgn 5.
Or, d’apres la question III.3.,
K
lowl3 < 511411

Ainsi,

f=Cnflla < 35511

8. Le calcul de Cy requiert des évaluations en un certain nombre de points tandis que celui
de Py nécessite de connaitre la valeur des intégrales, ce qui est plus pénible.

Partie VI

1. Soit ¢ € Fy;. Pour calculer %, il faut 2M + 1 multiplications. La somme ayant (2M + 1)
termes, il faut 2M additions, soit 4M + 1 opérations.

Z étant entierement définie par le calcul de tous les Zy, le calcul de Z nécessite (4M +
1)(2M + 1) opérations.

2. Supposons que M = 2M;. Il est clair que

5 2%l 2ko—1)¢
Zp = E W 2ok, + E w1

k1€F v k2€F py
FM — C FM — C
Posons z : ! ety: ! i,
k — 29k k — W "29k_1
Alors

2 = T.F.D.(w? M) (x) + T.F.D.(w? M)(y).

Ainsi, T.F.D.(w?, M) peut s’effectuer a 'aide de deux opérations T.F.D.(w?, M;).
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3. On suppose que M = 2"
Notons z = T.F.D.(x,2")(z). D’aprés ce qui précede,

1
2 2k14 2k2)4
20 = § X 2o + N E X gy 1.
k1€F k2€F vy

Le calcul de %, peut s’effectuer a l'aide de deux T.F.D.(x?,2"!) et une multiplication.
Comme pour Zj, la multiplication n’est pas nécessaire, on pourra effectuer 2" — (—2") =
27+l multiplications supplémentaires pour calculer 2.

Ainsi, ¥, < 2%,,_1 + 271,

Par récurrence immédiate, ¥,, < 2" + n2" L

Pour M =1, il n’y a pas de calcul a faire, donc ¥y = 0.

Ainsi, ¥, < 2M logy (M)

n temps Sy, temps de >,
4 | 20 8,80.10% 4,19.107
"1 25 9,01.107 1,68.107
30 9,22.10'8 6,44.1010

5. Soient p € N tel que 2P~ < PQ < 2P. On peut majorer le nombre d’opérations par 2.2Pp.

6. On considere M défini comme dans la question précédente. Le calcul de C);f nécessite
d’effectuer la transformée de Fourier discrete de f que l'on peut faire en 2M (P + Q)
opérations. A cela s’ajoutent les opérations élémentaires, soit 2)/ + 1 multiplications et
2M additions. Donc le calcul de C); f nécessite 2M (P + @ + 2) + 1 opérations.
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